Return to search

Regularidade no infinito de variedades de Hadamard e alguns problemas de Dirichlet assintóticos

Sejam M uma variedade de Hadamard com curvatura seccional KM ≤ −k2 < 0 e ∂ M sua fronteira assintótica. Dizemos que M satisfaz a condição de convexidade estrita se, dados x ∈ ∂∞M e W ⊂ ∂∞M aberto relativo contendo x, existe um aberto Ω ⊂ M de classe C2 tais que x ∈ Int (∂ Ω) ⊂ W e M \ Ω ´e convexo. Provamos que a condição de convexidade estrita implica que M éregular no infinito com relação ao operador Q[u] := div a(|∇u|) \ |∇u| ∇u definido no espa¸co de Sobolev W 1,p(M ), onde a ∈ C1([0, +∞)) satisfaz a(0) = 0, at(s) > 0 para todo s > 0, a(s) ≤ C (sp−1 + 1), ∀s ≥ 0, onde C > 0 é uma constante, e a(s) ≥ sq para algum q > 0 e para s ≈ 0 e supomos que é possível resolver problemas de Dirichlet em bolas (compactas) de M com dados contínuos no bordo. Segue disto que sob a condição de convexidade estrita, os problemas de Dirichlet para equação de hipersuperfície mínima e para o p-laplaciano, p > 1, são solúveis para qualquer dado contínuo prescrito no bordo assintótico. Também provamos que se M é rotacionalmente simétrica ou se inf BR+1 KM ≥ −e 2kR /R2+2 , R ≥ R∗, para certos R∗ e E > 0, então M satisfaz a condição de convexidade estrita. / Let M be Hadamard manifold with sectional curvature KM ≤ −k2, k > 0 and ∂∞M its asymptotic boundary. We say that M satisfies the strict convexity condition if, given x ∈ ∂∞M and a relatively open subset W ⊂ 2 ∂∞M containing x, there exists a C open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W and M \ Ω is convex. We prove that the strict convexity condition implies that M is regular at infinity relative to the operator Q [u] := div a(|∇u|) \ |∇u| ∇u , defined on the Sobolev space W 1,p(M ), where a ∈ C 1 ([0, ∞)) satisfies a(0) = 0, at(s) > 0 for all s > 0, a(s) ≤ C (s p−1 + 1), ∀s ≥ 0, where C > 0 is a constant, and a(s) ≥ sq , for some q > 0 and for s ≈ 0 and we suppose that it is possible to solve Dirichlet problems on (compact) balls of M with continuous boundary data. It follows that under the strict convexity condition, the Dirichlet problems for the minimal hypersurface and the p-Laplacian, p > 1, equations are solvable for any prescribed continuous asymptotic boundary data. We also prove that if M is rotationally symmetric or if inf BR+1 KM ≥ −e2kR/R2+2 , R ≥ R∗, for some R∗ and E > 0, then M satisfies the SC condition.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/55329
Date January 2012
CreatorsTelichevesky, Miriam
ContributorsRipoll, Jaime Bruck
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds