• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 1
  • Tagged with
  • 37
  • 37
  • 13
  • 12
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volumes de espessamentos de superfícies compactas em variedades Riemannianas completas de dimensão 3 e aplicações

Figueiredo, Edson Sidney January 2006 (has links)
Nesta tese conseguimos obter uma extensão para a fórmula do volume de tubos de H. Weyl para o caso hiperbólico e obter estimativas para o raio de injetividade em termos de invariantes geométricos/topológicos. Provamos, também, que se M é mínima, compacta e mergulhada em S³; e se Λ é uma das componentes conexas de Λ então, obtivemos uma estimativa por baixo para o vol (Λ) em termos da topologia e da geometria intrínsica de M. / In this work we obtain an extension of Weysl's tube formula to the hiperbolic space and estimatives of the radius of injectivity in terms of geometric and topologi- cal invariants. We also prove that if M is a minimal surface, compact and embedded in S³; and if Λ is the connected component of Λ; then obtain a below estimatives for vol (Λ) in terms of the topology and intrinsic geometry of M:
2

Volumes de espessamentos de superfícies compactas em variedades Riemannianas completas de dimensão 3 e aplicações

Figueiredo, Edson Sidney January 2006 (has links)
Nesta tese conseguimos obter uma extensão para a fórmula do volume de tubos de H. Weyl para o caso hiperbólico e obter estimativas para o raio de injetividade em termos de invariantes geométricos/topológicos. Provamos, também, que se M é mínima, compacta e mergulhada em S³; e se Λ é uma das componentes conexas de Λ então, obtivemos uma estimativa por baixo para o vol (Λ) em termos da topologia e da geometria intrínsica de M. / In this work we obtain an extension of Weysl's tube formula to the hiperbolic space and estimatives of the radius of injectivity in terms of geometric and topologi- cal invariants. We also prove that if M is a minimal surface, compact and embedded in S³; and if Λ is the connected component of Λ; then obtain a below estimatives for vol (Λ) in terms of the topology and intrinsic geometry of M:
3

Volumes de espessamentos de superfícies compactas em variedades Riemannianas completas de dimensão 3 e aplicações

Figueiredo, Edson Sidney January 2006 (has links)
Nesta tese conseguimos obter uma extensão para a fórmula do volume de tubos de H. Weyl para o caso hiperbólico e obter estimativas para o raio de injetividade em termos de invariantes geométricos/topológicos. Provamos, também, que se M é mínima, compacta e mergulhada em S³; e se Λ é uma das componentes conexas de Λ então, obtivemos uma estimativa por baixo para o vol (Λ) em termos da topologia e da geometria intrínsica de M. / In this work we obtain an extension of Weysl's tube formula to the hiperbolic space and estimatives of the radius of injectivity in terms of geometric and topologi- cal invariants. We also prove that if M is a minimal surface, compact and embedded in S³; and if Λ is the connected component of Λ; then obtain a below estimatives for vol (Λ) in terms of the topology and intrinsic geometry of M:
4

Algumas estimativas de autovalor e da média de auto-função do laplaciano de variedades riemannianas compactas

Schneider, Cinthya Maria January 2010 (has links)
Seja Ω uma variedade riemanniana compacta tal que ∂Ω = M é convexo em média e com curvatura de Ricci limitada inferiormente por (n - 1)k > 0. Neste trabalho, obtemos uma estimativa superior da média de uma autofunção do problema de Dirichlet Δu = -u e u│M = 0 e uma estimativa inferior do seu respectivo autovalor. Também obtemos uma estimativa superior para o primeiro autovalor positivo de Ω. Quando M é estritamente convexo, estabelecemos uma relação entre um autovalor do laplaciano Ω e o primeiro autovalor positivo de M. Além disso, no caso em que M é convexo em média e a curvatura de Ricci de Ω positiva, obtemos uma estimativa da área de M em função da dimensão e do volume de Ω e do ínfimo H0 da curvatura média H de M. / Let Ω be a compact Riemannian manifold such that Ω = M is mean convex and with Ricci curvature bounded below by (n - 1)k > 0. In this work, we obtain an upper bound for the mean of an eigenfunction of the Dirichlet problem Δu = -u and u│M = 0 and a lower bound for the corresponding eigenvalue. We also obtain an upper bound for the first positive eigenvalue of Ω. If M is strictly convex, we obtain a relation between an eigenvalue of the Laplacian of Ω and the first positive eigenvalue of M. If M is mean convex and has positive Ricci curvature, we obtain an estimative of the area of M in terms of the dimension and the volume of Ω and in terms of the infimum H0 of the mean curvature H of M.
5

Sobre a existência de geodésicas fechadas em variedades compactas

Ripoll, Jaime Bruck January 1981 (has links)
Resumo não disponível
6

Algumas estimativas de autovalor e da média de auto-função do laplaciano de variedades riemannianas compactas

Schneider, Cinthya Maria January 2010 (has links)
Seja Ω uma variedade riemanniana compacta tal que ∂Ω = M é convexo em média e com curvatura de Ricci limitada inferiormente por (n - 1)k > 0. Neste trabalho, obtemos uma estimativa superior da média de uma autofunção do problema de Dirichlet Δu = -u e u│M = 0 e uma estimativa inferior do seu respectivo autovalor. Também obtemos uma estimativa superior para o primeiro autovalor positivo de Ω. Quando M é estritamente convexo, estabelecemos uma relação entre um autovalor do laplaciano Ω e o primeiro autovalor positivo de M. Além disso, no caso em que M é convexo em média e a curvatura de Ricci de Ω positiva, obtemos uma estimativa da área de M em função da dimensão e do volume de Ω e do ínfimo H0 da curvatura média H de M. / Let Ω be a compact Riemannian manifold such that Ω = M is mean convex and with Ricci curvature bounded below by (n - 1)k > 0. In this work, we obtain an upper bound for the mean of an eigenfunction of the Dirichlet problem Δu = -u and u│M = 0 and a lower bound for the corresponding eigenvalue. We also obtain an upper bound for the first positive eigenvalue of Ω. If M is strictly convex, we obtain a relation between an eigenvalue of the Laplacian of Ω and the first positive eigenvalue of M. If M is mean convex and has positive Ricci curvature, we obtain an estimative of the area of M in terms of the dimension and the volume of Ω and in terms of the infimum H0 of the mean curvature H of M.
7

Sobre a existência de geodésicas fechadas em variedades compactas

Ripoll, Jaime Bruck January 1981 (has links)
Resumo não disponível
8

Algumas estimativas de autovalor e da média de auto-função do laplaciano de variedades riemannianas compactas

Schneider, Cinthya Maria January 2010 (has links)
Seja Ω uma variedade riemanniana compacta tal que ∂Ω = M é convexo em média e com curvatura de Ricci limitada inferiormente por (n - 1)k > 0. Neste trabalho, obtemos uma estimativa superior da média de uma autofunção do problema de Dirichlet Δu = -u e u│M = 0 e uma estimativa inferior do seu respectivo autovalor. Também obtemos uma estimativa superior para o primeiro autovalor positivo de Ω. Quando M é estritamente convexo, estabelecemos uma relação entre um autovalor do laplaciano Ω e o primeiro autovalor positivo de M. Além disso, no caso em que M é convexo em média e a curvatura de Ricci de Ω positiva, obtemos uma estimativa da área de M em função da dimensão e do volume de Ω e do ínfimo H0 da curvatura média H de M. / Let Ω be a compact Riemannian manifold such that Ω = M is mean convex and with Ricci curvature bounded below by (n - 1)k > 0. In this work, we obtain an upper bound for the mean of an eigenfunction of the Dirichlet problem Δu = -u and u│M = 0 and a lower bound for the corresponding eigenvalue. We also obtain an upper bound for the first positive eigenvalue of Ω. If M is strictly convex, we obtain a relation between an eigenvalue of the Laplacian of Ω and the first positive eigenvalue of M. If M is mean convex and has positive Ricci curvature, we obtain an estimative of the area of M in terms of the dimension and the volume of Ω and in terms of the infimum H0 of the mean curvature H of M.
9

Sobre a existência de geodésicas fechadas em variedades compactas

Ripoll, Jaime Bruck January 1981 (has links)
Resumo não disponível
10

Comportamento de Geodésicas sobre variedades Riemannianas Compactas

Ricardo Javier Hancco Anccori 12 March 2004 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Seja M uma variedade Riemanniana, Denotemos por X(M) o conjunto de todos campos vetoriais de classe C1 em M e por D(M) o anel das funções reais definidas em M.

Page generated in 0.1253 seconds