In this thesis we focus on Dirichlet's problem for the complex Monge-Ampère equation. That is, for a given non-negative Radon measure µ we are interested in the conditions under which there exists a plurisubharmonic function u such that (ddcu)n=µ, where (ddc)n is the complex Monge-Ampère operator. If this function u exists, then can it be chosen with given boundary values? Is this solution uniquely determined within a given class of functions?
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-1562 |
Date | January 2008 |
Creators | Phạm, Hoàng Hiệp |
Publisher | Umeå universitet, Matematik och matematisk statistik, Umeå : Matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Doctoral thesis / Umeå University, Department of Mathematics, 1102-8300 ; 40 |
Page generated in 0.0019 seconds