This work is a numerical examination of a semiflexible polymer exposed to a disorder landscape consisting of hard disks. For a small parameter range and simple constraints it is known that disorder leads to structural transitions of the equilibrium properties of polymers. The scope of this work strongly extends this range by going to both high disorder densities and large stiffnesses of the polymers. The competing length scales of polymer stiffness and average distance between the obstacles of the potential along with the way of assembling the disorder lead to a wide range of effects such as crumpling and stretching of polymer configurations due to the disorder or a modulation of the polymer’s characterizing observables with the correlation function of the potential. The high accuracy results presented in this work have been obtained by means of sophisticated Monte Carlo simulations. The refinement of a rarely applied but highly promising method to a state of the art algorithm in connection with latest numerical techniques made it possible to investigate the impact of hard-disk disorder on semiflexible polymer conformations on a broad scale.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:11884 |
Date | 22 February 2013 |
Creators | Schöbl, Sebastian |
Contributors | Janke, Wolfhard, Orland, Henri, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds