Return to search

Evaluation of a vibrating plate extraction column by application of steady state and unsteady state backflow models

Thesis (MScEng)--University of Stellenbosch, 2001. / ENGLISH ABSTRACT: Liquid-liquid extraction is a branch of solvent extraction that employs addition of an immiscible
solvent, as a separating agent, to a liquid feed. Various types of equipment can be used, however
if the process requires more than three stages, typically an extraction column, operated in a
countercurrent manner would be employed. In order to scale-up and design a commercial
extraction column, it is necessary to quantify the extraction system hydrodynamics and mass
transfer characteristics. The principal objectives of countercurrently operated extraction columns
concern the mass transfer rate and permissible throughput. The performance of a countercurrent
extraction column can be adversely affected by axial mixing, which disturbs countercurrent plug
flow.
Various methods have been devised whereby it is possible to evaluate the performance of a
column extraction and scale it up to ensure that the commercial operation achieves the same
separation achieved on a pilot scale. Classical axial dispersion models allow quantification of
axial mixing and mass transfer rates. Two Backflow models were derived to describe the
performance of a Vibrating Plate Extraction (VPE) Column, one for steady state and one for
unsteady state operation. The steady state model consisted of a series of simultaneous equations,
which were solved using the Excel solver function. The unsteady state model consisted of 54
ordinary differential equations, which were solved stagewise using a fourth order Runge Kutta
procedure.
The steady state model was based on a dissociation extraction process, whereby meta-cresol (mcresol)
was separated from para-hydroxy-benzaldehyde (PHB). The process used the differing
de-protonation constants of the two components and the fact that the solubility of the ionic
species of each was low in the organic solvent. The extraction system was quantified using a
combination of acid-base and extraction theory. Experimentally determined concentration
profiles, measured along the length of the column, were force fitted to the model, thereby
allowing determination of the model parameters. The mass transfer coefficients ranged between
0.0098 and 0.189 Imin, and it was found that backmixing of the dispersed phase was negligible,
while that of the continuous phase was low (varying between 0 and 0.3).
The unsteady state model, used to describe the dynamic response of a VPE, was based on a
system whereby tert-butyl hydroquinone (TBHQ) was recovered from a purge stream. Conductivity measurements of the raffinate were used to determine the residence time
distribution in the column, and hence allowed determination of the extent of axial mixing. It was
preferable that the column be operated with minimum settler volumes, otherwise buffering in the
settlers occurred, thereby masking axial mixing effects. This method did not facilitate accurate
determination of backmixing, at least two other conductivity measurements in the column
needed to be measured. / AFRIKAANSE OPSOMMING: Vloeistof-vloeistofekstraksie is 'n vertakking van oplosmiddelekstraksie wat gebruik maak van
die toevoeging van 'n onmengbare oplosmiddel as 'n skeidingagent tot die vloeistofvoer.
Verskeie tipes apparaat kan gebruik word, maar as die proses meer as drie stadia vereis, sal 'n
ekstraksiekolom, in teenstroom bedryf, tipies gebruik word. Om dit moontlik te maak om 'n
kommersiele ekstraksiekolom te skalleer en te bedryf, moet die ekstraksiesisteem se
hidrodinamika en massa-oordragkarakteristieke gekwantifiseer word. Die hoof doelwitte van
ekstraksiekolomme wat teenstroom bedryf word, gaan om die massa-oordrag en toelaatbare
deurset. Die skeidingsdoeltreffendheid van 'n teenstroom ekstraksiekolom kan nadelig beinvloed
word deur aksiale vermenging, wat teenstroom propvloei versteur.
Verskeie metodes is voorgestel wat dit moontlik maak om die doeltreffendheid van 'n
ekstraksiekolom te evalueer en te verseker dat dieselfde skeiding verkry word vir 'n kornmersiele
aanleg as vir 'n loodsaanleg. Klassieke aksiale dispersiemodelle laat kwantitatiewe berekening
van aksiale vermenging en massa-oordragtempos toe. Twee terugvloeimodelle is afgelei om die
werksverrigting van 'n Vibrerende Plaat Ekstraksiekolom (VPE) te beskryf. Die gestadidge
toestand model bestaan uit 'n stelsel gelyktydige vergelykings wat opgelos is d.m.v. Excel. Die
ongestadige toestand model bestaan uit 54 gewone differensiaalvergelykings, wat stapsgewys
opgelos is d.m.v. die vierde orde Runge-Kutta metode.
Die gestadigde teostand model is gebaseer op 'n dissosiasie ekstraksieproses, waardeur m-kresol
geskei is van p-hidroksiebensaldehied (PHB). Die proses maak gebruik van die verskillende
protoneringskonstantes van die twee verbindings en die feit dat die oplosbaarheid van beide die
ioniese spesies laag is in die organiese oplosmiddel. Die ekstraksiestelsel is gekwantifiseer deur
gebruik te maak van 'n kombinasie van suur-basis- en ekstraksieteorie. Die model is gepas op
eksperimenteel bepaalde konsentrasieprofiele, gemeet langs die lengte van die kolom. Die
massa-oordragkoeffisiente het waardes aangeneem tussen 0.0098 en 0.189 Imin en daar is gevind
dat die terugvermenging van die verspreide fase weglaatbaar was, terwyl die van die kontinue
fase laag was (tussen 0 en 0.3).
Die ongestadige toestand model wat gebruik is om die dinamiese respons van die VPE te
beskryf, is gebaseer op 'n stelsel waar tert-butielhidrokinoon (TBHQ) herwin is vanuit 'n
bloeistroom. Geleidingsmetings van die raffinaat is gebruik om die residensietydverspreiding in die kolom te bepaaI en het derhalwe toegelaat dat die mate van aksiale vermenging bepaaI kon
word. Die kolom moet by voorkeur met minimale skeiervolumes bedryf word, anders is daar 'n
buffereffek in die skeiers, wat die aksiale vermenging verskuiI. Hierdie metode Iaat nie die
akkurate bepaling van terugvermenging toe nie en minstens twee ander geleidingsmetings in die
kolom was benodig.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/52262
Date12 1900
CreatorsHutton, Bridget Margaret
ContributorsLorenzen, L., Heyberger, A., Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Format211 p. : ill.
RightsStellenbosch University

Page generated in 0.0798 seconds