There has been significant development in the area of neural network based power system protection in the previous decade. Neural network technology has been applied for various protective relaying functions including distance protection. The reliability and efficiency of ANN based distance relays is improving with the developing digital technologies. There are, however, some inherent deficiencies that still exist in the way these relays are designed. This research addresses some of these issues and proposes an improved protective relaying scheme.<p>
The traditional ANN distance relay designs use parameter estimation algorithms to determine the phasors of currents and voltages. These phasors are used as inputs to determine the distance of a fault from relay location. The relays are trained and tested on this criterion; however, no specific relay characteristic has been defined. There is a need for development of a new methodology that will enable designing of an ANN that works as a generic distance relay with clearly defined operating boundary.<p>
This research work presents a modified distance relaying algorithm that has been combined with a neural network approach to eliminate the use of phasors. The neural network is trained to recognize faults on basis of a specific relay characteristic. The algorithm is flexible and has been extended for the design of other relays. The neural network has been trained using pure sinusoidal values and has been tested on a 17-bus power system simulated in PSCAD. The training and testing of the neural network on different systems ensures that the relay is generic in nature. The proposed relay can be used on any transmission line without re-training the neural network.<p>
The design has been tested for different fault conditions including different fault resistances and fault inception angles. The test results show that the relay is able to detect faults in lesser time as compared to conventional relay algorithms while maintaining the integrity of relay boundaries.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-02122010-104924 |
Date | 24 February 2010 |
Creators | Chawla, Gaganpreet |
Contributors | Brahma, Sukumar, Nguyen, H., Karki, Rajesh, Burton, Richard, Sachdev, Mohindar S., Gokaraju, Ramakrishna, Salt, Eric J. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-02122010-104924/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0025 seconds