• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling relays for power system protection studies

Aquiles Perez, Sandro Gianny 24 July 2006
Numerical relays are the result of the application of microprocessor technology in relay industry. Numerical relays have the ability to communicate with its peers, are economical and are easy to operate, adjust and repair. Modeling of digital and numerical relays is important to adjust and settle protection equipment in electrical facilities and to train protection personnel. Designing of numerical relays is employed to produce new prototypes and protection algorithms. Computer models of numerical relays for the study of protection systems are greatly enhanced when working along with an electromagnetic transient program (emtp). A literature survey has revealed that previous modeling techniques presented a lack of automation in the generation of relay models, or show high complexity in linking the numerical relay models with the power system modeled in the emtp. <p> This thesis describes a new approach of modeling and designing of numerical relays. The proposed methodology employs a Visual C++-based program (PLSA) to obtain from the user the specifications of the relay to be designed, and to process this information to generate the FORTRAN code that represents the functional blocks of the relay. This generated code is incorporated in a PSCAD/EMTDC case using a resource called component, which facilitates the creation of user-custom models in PSCAD/EMTDC. Convenient electrical and logical signals are connected to the inputs and outputs of the PSCAD/EMTDC component. Further additions of digital relay models into the PSCAD/EMTDC case constitute the protection system model. The thesis describes a procedure for designing distance and differential relay models, but the methodology may be extended to design models of other relay elements. <p> A number of protection system studies were performed with the structure created with the proposed methodology. Adjustment of distance and differential relays were studied. Relay performance under CT saturation and the effects of the removal of anti-aliasing analog filter were investigated. Local and remote backup distance protection of transmission lines was simulated. The adjustment of differential protection of power transformer to overcome the effects of inrush current was performed. Power transformer differential protection responses to internal and external faults were considered. <p>Additionally, a set of tests were performed to investigate the consistency of the relay models generated with the proposed methodology. The results showed that the numerical relay models respond satisfactorily according with the expected results of the tests.
2

Modeling relays for power system protection studies

Aquiles Perez, Sandro Gianny 24 July 2006 (has links)
Numerical relays are the result of the application of microprocessor technology in relay industry. Numerical relays have the ability to communicate with its peers, are economical and are easy to operate, adjust and repair. Modeling of digital and numerical relays is important to adjust and settle protection equipment in electrical facilities and to train protection personnel. Designing of numerical relays is employed to produce new prototypes and protection algorithms. Computer models of numerical relays for the study of protection systems are greatly enhanced when working along with an electromagnetic transient program (emtp). A literature survey has revealed that previous modeling techniques presented a lack of automation in the generation of relay models, or show high complexity in linking the numerical relay models with the power system modeled in the emtp. <p> This thesis describes a new approach of modeling and designing of numerical relays. The proposed methodology employs a Visual C++-based program (PLSA) to obtain from the user the specifications of the relay to be designed, and to process this information to generate the FORTRAN code that represents the functional blocks of the relay. This generated code is incorporated in a PSCAD/EMTDC case using a resource called component, which facilitates the creation of user-custom models in PSCAD/EMTDC. Convenient electrical and logical signals are connected to the inputs and outputs of the PSCAD/EMTDC component. Further additions of digital relay models into the PSCAD/EMTDC case constitute the protection system model. The thesis describes a procedure for designing distance and differential relay models, but the methodology may be extended to design models of other relay elements. <p> A number of protection system studies were performed with the structure created with the proposed methodology. Adjustment of distance and differential relays were studied. Relay performance under CT saturation and the effects of the removal of anti-aliasing analog filter were investigated. Local and remote backup distance protection of transmission lines was simulated. The adjustment of differential protection of power transformer to overcome the effects of inrush current was performed. Power transformer differential protection responses to internal and external faults were considered. <p>Additionally, a set of tests were performed to investigate the consistency of the relay models generated with the proposed methodology. The results showed that the numerical relay models respond satisfactorily according with the expected results of the tests.
3

Design and implementation of ANN based phase comparators applied to transmission line protection

Chawla, Gaganpreet 24 February 2010
There has been significant development in the area of neural network based power system protection in the previous decade. Neural network technology has been applied for various protective relaying functions including distance protection. The reliability and efficiency of ANN based distance relays is improving with the developing digital technologies. There are, however, some inherent deficiencies that still exist in the way these relays are designed. This research addresses some of these issues and proposes an improved protective relaying scheme.<p> The traditional ANN distance relay designs use parameter estimation algorithms to determine the phasors of currents and voltages. These phasors are used as inputs to determine the distance of a fault from relay location. The relays are trained and tested on this criterion; however, no specific relay characteristic has been defined. There is a need for development of a new methodology that will enable designing of an ANN that works as a generic distance relay with clearly defined operating boundary.<p> This research work presents a modified distance relaying algorithm that has been combined with a neural network approach to eliminate the use of phasors. The neural network is trained to recognize faults on basis of a specific relay characteristic. The algorithm is flexible and has been extended for the design of other relays. The neural network has been trained using pure sinusoidal values and has been tested on a 17-bus power system simulated in PSCAD. The training and testing of the neural network on different systems ensures that the relay is generic in nature. The proposed relay can be used on any transmission line without re-training the neural network.<p> The design has been tested for different fault conditions including different fault resistances and fault inception angles. The test results show that the relay is able to detect faults in lesser time as compared to conventional relay algorithms while maintaining the integrity of relay boundaries.
4

Design and implementation of ANN based phase comparators applied to transmission line protection

Chawla, Gaganpreet 24 February 2010 (has links)
There has been significant development in the area of neural network based power system protection in the previous decade. Neural network technology has been applied for various protective relaying functions including distance protection. The reliability and efficiency of ANN based distance relays is improving with the developing digital technologies. There are, however, some inherent deficiencies that still exist in the way these relays are designed. This research addresses some of these issues and proposes an improved protective relaying scheme.<p> The traditional ANN distance relay designs use parameter estimation algorithms to determine the phasors of currents and voltages. These phasors are used as inputs to determine the distance of a fault from relay location. The relays are trained and tested on this criterion; however, no specific relay characteristic has been defined. There is a need for development of a new methodology that will enable designing of an ANN that works as a generic distance relay with clearly defined operating boundary.<p> This research work presents a modified distance relaying algorithm that has been combined with a neural network approach to eliminate the use of phasors. The neural network is trained to recognize faults on basis of a specific relay characteristic. The algorithm is flexible and has been extended for the design of other relays. The neural network has been trained using pure sinusoidal values and has been tested on a 17-bus power system simulated in PSCAD. The training and testing of the neural network on different systems ensures that the relay is generic in nature. The proposed relay can be used on any transmission line without re-training the neural network.<p> The design has been tested for different fault conditions including different fault resistances and fault inception angles. The test results show that the relay is able to detect faults in lesser time as compared to conventional relay algorithms while maintaining the integrity of relay boundaries.
5

Analysis of a Major Electric Grid – Stability and Adaptive Protection

Alanzi, Sultan 09 August 2013 (has links)
No description available.
6

Redes neurais artificiais aplicadas a proteção de sistemas elétricos de potência / Artificial neural networks applied to the protection of electrical power systems

Jorge, David Calhau 21 March 1997 (has links)
Um relé de distância utilizado na proteção de Linhas de Transmissão é usualmente projetado para atuar sob condições fixas de operação. Portanto, o desempenho destes relés é afetado pela mudança no ponto de operação do sistema. Grandes avanços, relativos à proteção, podem ser alcançados com a implementação de reconhecimento de padrões para o diagnóstico de faltas em sistemas elétricos de potência. Este trabalho demonstra a utilização de Redes Neurais Artificiais operando como um classificador de padrões para a operação de um relé de distância. O projeto utiliza a magnitude dos fasores das três fases de corrente e tensão, de um dos barramentos da Linha de Transmissão, como dados de entrada. O uso de Redes Neurais Artificiais resulta em um melhor desempenho do relé, mantendo seu alcance mesmo diante de diferentes condições de falta ou mudanças no ponto de operação do sistema. / A distance relay for the protection of transmission lines is usually designed on the basis of fixed settings. The performance of such relays is therefore affected by the changing network parameters. The implementation of a pattern recognizer for power system diagnosis can provide great advances in the protection field. This work demonstrates the use of an Artificial Neural Network as a pattern classifier for a distance relay operation. The scheme utilizes the magnitudes of three phase voltage and current phasors, from one busbar of the transmission line, as inputs. An improved performance with the use of an Artificial Neural Networks approach is experienced once the relay can operate correctly, keeping the reach when faced with different fault conditions as well as network parameters change.
7

Redes neurais artificiais aplicadas a proteção de sistemas elétricos de potência / Artificial neural networks applied to the protection of electrical power systems

David Calhau Jorge 21 March 1997 (has links)
Um relé de distância utilizado na proteção de Linhas de Transmissão é usualmente projetado para atuar sob condições fixas de operação. Portanto, o desempenho destes relés é afetado pela mudança no ponto de operação do sistema. Grandes avanços, relativos à proteção, podem ser alcançados com a implementação de reconhecimento de padrões para o diagnóstico de faltas em sistemas elétricos de potência. Este trabalho demonstra a utilização de Redes Neurais Artificiais operando como um classificador de padrões para a operação de um relé de distância. O projeto utiliza a magnitude dos fasores das três fases de corrente e tensão, de um dos barramentos da Linha de Transmissão, como dados de entrada. O uso de Redes Neurais Artificiais resulta em um melhor desempenho do relé, mantendo seu alcance mesmo diante de diferentes condições de falta ou mudanças no ponto de operação do sistema. / A distance relay for the protection of transmission lines is usually designed on the basis of fixed settings. The performance of such relays is therefore affected by the changing network parameters. The implementation of a pattern recognizer for power system diagnosis can provide great advances in the protection field. This work demonstrates the use of an Artificial Neural Network as a pattern classifier for a distance relay operation. The scheme utilizes the magnitudes of three phase voltage and current phasors, from one busbar of the transmission line, as inputs. An improved performance with the use of an Artificial Neural Networks approach is experienced once the relay can operate correctly, keeping the reach when faced with different fault conditions as well as network parameters change.
8

Enabling Communication and Networking Technologies for Smart Grid

Garlapati, Shravan Kumar Reddy 14 March 2014 (has links)
Transforming the aging electric grid to a smart grid is an active area of research in industry and the government. One of the main objectives of the smart grid is to improve the efficiency of power generation, transmission and distribution and also to improve the stability and the reliability of the grid. In order to achieve this, various processes involved in power generation, transmission, and distribution should be armed with advanced sensor technologies, computing, communication and networking capabilities to an unprecedented level. These high speed data transfer and computational abilities aid power system engineers to obtain wide area measurements, achieve better control of power system operations and improve the reliability of power supply and the efficiency of different power grid operations. In the process of making the grid smarter, problems existing in traditional grid applications can be identified and solutions have to be developed to fix the identified issues. In this dissertation, two problems that aid power system engineers to meet the above mentioned smart grid's objective are researched. One problem is related to the distribution-side smart grid and the other one is a part of the transmission-side smart grid. Advanced Metering Infrastructure (AMI) is one of the important distribution-side smart grid applications. AMI is a technology where smart meters are installed at customer site which gives the utilities the ability to monitor and collect information related to the amount of electricity, water, and gas consumed by the user. Many recent research studies suggested the use of 3G cellular CDMA2000 for AMI network as it provides an advanced and cost effective solution for smart grid communications. Taking into account both technical and non-technical factors such as extended lifetime, security, availability and control of the solution, Alliander, an electric utility in Netherlands deployed a private 3G CDMA2000 network for smart metering. Although 3G CDMA2000 satisfies the requirements of smart grid applications, an analysis on the use of the current state of the art 3G CDMA2000 for smart grid applications indicates that its usage results in high percentage of control overhead, high latency and high power consumption for data transfer. As a part of this dissertation, we proposed FLEX-MAC - a new Medium Access Control (MAC) protocol that reduces the latency and overhead in smart meter data collection when compared to 3G CDMA2000 MAC. As mentioned above the second problem studied in this dissertation is related to the transmission-side grid. Power grid transmission and sub-transmission lines are generally protected by distance relays. After a thorough analysis of U.S. historical blackouts, North American Electric Reliability Council (NERC) has concluded that the hidden failure induced tripping of distance relays is responsible for 70% of the U.S. blackouts. As a part of this dissertation, agent based distance relaying protection scheme is proposed to improve the robustness of distance relays to hidden failures and thus reduce the probability of blackouts. This dissertation has two major contributions. First, a hierarchically distributed non-intrusive Agent Aided Distance Relaying Protection Scheme (AADRPS) is proposed to improve the robustness of distance relays to hidden failures. The problem of adapting the proposed AADRPS to a larger power system network consisting of thousands of buses is modeled as an integer linear programming multiple facility location optimization problem. Distance relaying protection scheme is a real time system and has stringent timing requirements. Therefore, in order to verify if the proposed AADRPS meets the timing requirements or not and also to check for deadlocks, verification models based on UPPAAL real time model checker are provided in this dissertation. So, the entire framework consisting of AADRPS that aids in increasing the robustness of distance relays and reducing the possibility of blackouts, the multiple facility location optimization models and the UPPAAL real time model checker verification models form one of the major contributions of this dissertation. The second contribution is related to the MAC layer of AMI networks. In this dissertation, FLEX-MAC - a novel and flexible MAC protocol is proposed to reduce the overhead and latency in smart meter data collection. The novelty of the FLEX-MAC lies in its ability to change the mode of operation based on the type of the data being collected in a smart meter network. FLEX-MAC employs Frame and Channel Reserved (FCR) MAC or Frame Reserved and Random Channel (FRRC) MAC for scheduled data collection. Power outage data in an AMI network is considered as a random data . In a densely populated area, during an outage, a large number of smart meters attempt to report the outage, which significantly increases the Random Access CHannel (RACH) load. In order to reduce the RACH traffic during an outage, this dissertation proposes a Time Hierarchical Scheme (THS). Also, in order to minimize the total time to collect the power outage data, a Backward Recursive Dynamic Programming (BRDP) approach is proposed to adapt the transmission rate of smart meters reporting an outage. Both the Optimal Transmission Rate Adaption and Time Hierarchical Scheme form the basis of OTRA-THS MAC which is employed by FLEX-MAC for random data collection. Additionally, in this work, Markov chain models are presented for evaluating the performance of FCR and FRRC MACs in terms of average throughput and delay. Also, another Markov model is presented to find the mean time to absorption or mean time to collect power outage data of OTRA-TH MAC during an outage. / Ph. D.
9

Behavior of Distance Relay Characteristics on Interconnecting Lines Fed From Wind Farms

Srivastava, Sachin January 2015 (has links) (PDF)
Distance relays due to their selectivity and operating speed are used in HV/EHV line protection. The dynamic nature of Mho characteristic, which happens to be most primitive technique in line protection implemented with distance relaying, is built by using the measurement of local voltage and current signals. These signals have been influenced substantially by fault resistance and the source impedance feeding the line. In case of different generation sources, the source impedance and fault characteristic also change accordingly. Environmental benefit of wind turbine technology is making it a potential source of energy. These wind turbine-generating units (WTGU) use rugged induction/synchronous machines along with power electronics converters as controlling equipment. This gives a new challenge to distance relays, as the fault current contribution of these sources depends on the converter operational principle. In this thesis a typical wind farm of Indian systems are modeled in an IN-HOUSE tool developed as part of fault analysis on wind farm system. Directly connected and front-end converter based wind turbines with their interconnections are modeled in this simulation tool. Fault voltage and current waveforms are obtained for all types of wind turbine-generating units with both radial and LILO (Loop in Loop out) connection. PSCAD based modeling has been done for DFIG type of wind turbines. The fault waveforms are generated to evaluate relay performance. Five case studies having both Radial and Loop in Loop out (LILO) connection of wind farms are simulated. These case studies generate approximately 20000 cases, which are analyzed for distance relay performance studies. In addition, the analysis is further verified on relay hardware having three characteristics, namely Self Polarized Mho (SPM), Quadrature Polarized Mho (QPM) and Quadrilateral (QUAD) characteristics. The detailed studies are carried out in this thesis to ensure and suggest the system operators with appropriate relay characteristics to be used for transmission line protection in the case of wind farms interconnected to Grid. Based on the studies carried out in the thesis, LILO connection has no impact on distance relay characteristic. In radially connected wind farms, grid side relay will operate reliably for all types of faults. It has been recommended in the thesis that wind farm side distance relay characteristics should be adjusted based on the types of wind turbines (Type-1, Type-2, Type-3 and Type-4). Based on the investigations carried out in the thesis, voltage based phase selector has been recommended for Type-4 WTGU based wind farms.
10

Performance Evaluation Of Distance Relays For FACTS Compensated Transmission Lines

Maturu, Suresh 03 1900 (has links) (PDF)
With limited enhancement or expansion of the transmission infrastructure, the contemporary power systems are operating under more stressed conditions. It becomes important to fully utilize the existing transmission system to supply load demand as much as possible, thus eliminating or reducing the need for new transmission investment. Flexible AC Transmission System (FACTS) technology provides an alternative to fully utilize the existing transmission lines as well as new and upgraded lines, by controlling power and also enhancing the power transfer capability of transmission lines. However, the implementation of FACTS controllers in the transmission system has introduced new power system dynamics that must be addressed in the area of power system protection, such as rapid changes in line impedance, power angle, line currents, transients introduced by the occurrence of fault and associated control action of the FACTS controller. Therefore, the performance of the protection system must be carefully analyzed in the presence of FACTS controllers. The thesis aims at evaluating the performance of distance relays when different types of FACTS controllers, in particular Voltage Source Converter (VSC) based FACTS controllers, are incorporated at the midpoint of the transmission system to achieve voltage profile improvement and power transfer capability. The detailed models of these controllers and their control strategies are described. The presence of FACTS controllers in the loop affects both steady state and transient components of voltage and current signals. The rapid response of FACTS controllers to different power system configurations significantly affects the apparent impedance seen by distance relays. The apparent impedance seen by distance relays would be different from that of the system without FACTS controller. Due to this, the distance relay may malfunction, resulting in unreliable operation of the power system during faults. Furthermore, the effect of FACTS controllers on distance relay operation depends on the type of FACTS controller used, the application for which it has been installed and its location in the power system. The distance relay is evaluated for different loading conditions and for various fault conditions. Simulation studies are carried out using PSCAD/EMTDC based transient simulation package.

Page generated in 0.0667 seconds