Return to search

Residential Microgrids for Disaster Recovery Operations

The need for a continuous supply of electric power is vital to providing the basic services of modern life. The energy infrastructure that the vast majority of the world depends on, while very reliable, is also very vulnerable. This infrastructure is particularly vulnerable to disruptions caused by natural disasters. Interruptions of electric service can bring an end to virtually all the basic services that people are dependent on. Recent natural disasters have highlighted the vulnerabilities of large, economically developed, regions to disruptions to their supply of electricity. The widespread devastation from the 2011 Japanese Tsunami and Hurricane Irene in North America, have demonstrated both the vulnerability of the contemporary power grids to long term interruption of service and also the potential of microgrids to ride through these interruptions. Microgrids can be used before, during, and after a major natural disaster to supply electricity, after the main grid source has been interrupted. This thesis researches the potential of clean energy microgrids for disaster recovery. Also a model of a proposed residential microgrid for transient analysis is developed. As the world demands more energy at increasingly higher levels of reliability, the role of microgrids is expected to grow aggressively to meet these new requirements. This thesis will look at one potential application for a microgrid in a residential community for the purpose of operating in an independent island mode operation. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/19242
Date07 January 2013
CreatorsHurtt, James William
ContributorsElectrical and Computer Engineering, Mili, Lamine M., Evrenosoglu, Cansin Yaman, Lai, Jih-Sheng
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds