Fault tolerant and distributed embedded systems are research areas that have the interest of such entities as NASA, the Department of Defense, and various other government agencies, corporations, and universities. Taking a system and designing it to work in the presence of faults is appealing to these entities as it inherently increases the reliability of the deployed system. There are a few different fault tolerant techniques that can be implemented in a system design to handle faults as they occur. One such technique is the reconfiguration of a portion of the system to a redundant resource. This is a difficult task to manage within a distributed embedded system because of the distributed, directly addressed data producer and consumer dependencies that exist in common network infrastructures. It is the goal of this thesis work to develop a novel message routing layer for the communication management of distributed embedded systems that reduces the complexity of this problem. The resulting product of this thesis provides a robust approach to the design, implementation, integration, and deployment of a distributed embedded system.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1039 |
Date | 01 January 2010 |
Creators | Brown, Darren Jacob |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0982 seconds