In large multiprocessors, the access to shared memory is often nonuniform, and may vary as much as ten times for some distributed shared-memory architectures (DSMs). This dissertation identifies another important nonuniform property of DSM systems: nonuniform communication architecture, NUCA. High-end hardware-coherent machines built from large nodes, or from chip multiprocessors, are typical NUCA systems, since they have a lower penalty for reading recently written data from a neighbor's cache than from a remote cache. This dissertation identifies node affinity as an important property for scalable general-purpose locks. Several software-based hierarchical lock implementations exploiting NUCAs are presented and evaluated. NUCA-aware locks are shown to be almost twice as efficient for contended critical sections compared to traditional lock implementations. The shared-memory “illusion”' provided by some large DSM systems may be implemented using either hardware, software or a combination thereof. A software-based implementation can enable cheap cluster hardware to be used, but typically suffers from poor and unpredictable performance characteristics. This dissertation advocates a new software-hardware trade-off design point based on a new combination of techniques. The two low-level techniques, fine-grain deterministic coherence and synchronous protocol execution, as well as profile-guided protocol flexibility, are evaluated in isolation as well as in a combined setting using all-software implementations. Finally, a minimum of hardware trap support is suggested to further improve the performance of coherence protocols across cluster nodes. It is shown that all these techniques combined could result in a fairly stable performance on par with hardware-based coherence.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-6058 |
Date | January 2005 |
Creators | Radovic, Zoran |
Publisher | Uppsala universitet, Avdelningen för datorteknik, Uppsala universitet, Datorteknik, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Uppsala Dissertations from the Faculty of Science and Technology, 1104-2516 ; 67 |
Page generated in 0.0022 seconds