Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water to connect disparate building heating and cooling loads together, providing a platform for improving energy efficiency, reducing emissions, and incorporating alternative means of energy generation. However, satellite DHC networks incorporate thermal production units that are distributed amongst the buildings nodes, which offers greater operational flexibility and reduced capital cost savings for applications using existing building stock. This study was focused on the development of the methodology behind a comprehensive energy model that can assess the practical and financial viability of satellite DHC network scenarios. A detailed scenario application of the model demonstrated significant energy savings and investment potential. Additionally, environmental assessment methods and alternative generation technology were explored in supplementary studies of Deep Lake Water Cooling (DLWC) and building-scale Combined Heat and Power (CHP).
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31418 |
Date | 20 December 2011 |
Creators | Rulff, David |
Contributors | Kennedy, Christopher A. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis, Other |
Page generated in 0.0014 seconds