Return to search

An empirical study on synthetic image generation techniques for object detectors

Convolutional Neural Networks are a very powerful machine learning tool that outperformed other techniques in image recognition tasks. The biggest drawback of this method is the massive amount of training data required, since producing training data for image recognition tasks is very labor intensive. To tackle this issue, different techniques have been proposed to generate synthetic training data automatically. These synthetic data generation techniques can be grouped in two categories: the first category generates synthetic images using computer graphic software and CAD models of the objects to recognize; the second category generates synthetic images by cutting the object from an image and pasting it on another image. Since both techniques have their pros and cons, it would be interesting for industries to investigate more in depth the two approaches. A common use case in industrial scenarios is detecting and classifying objects inside an image. Different objects appertaining to classes relevant in industrial scenarios are often undistinguishable (for example, they all the same component). For these reasons, this thesis work aims to answer the research question “Among the CAD model generation techniques, the Cut-paste generation techniques and a combination of the two techniques, which technique is more suitable for generating images for training object detectors in industrial scenarios”. In order to answer the research question, two synthetic image generation techniques appertaining to the two categories are proposed.The proposed techniques are tailored for applications where all the objects appertaining to the same class are indistinguishable, but they can also be extended to other applications. The two synthetic image generation techniques are compared measuring the performances of an object detector trained using synthetic images on a test dataset of real images. The performances of the two synthetic data generation techniques used for data augmentation have been also measured. The empirical results show that the CAD models generation technique works significantly better than the Cut-Paste generation technique where synthetic images are the only source of training data (61% better),whereas the two generation techniques perform equally good as data augmentation techniques. Moreover, the empirical results show that the models trained using only synthetic images performs almost as good as the model trained using real images (7,4% worse) and that augmenting the dataset of real images using synthetic images improves the performances of the model (9,5% better). / Konvolutionella neurala nätverk är ett mycket kraftfullt verktyg för maskininlärning som överträffade andra tekniker inom bildigenkänning. Den största nackdelen med denna metod är den massiva mängd träningsdata som krävs, eftersom det är mycket arbetsintensivt att producera träningsdata för bildigenkänningsuppgifter. För att ta itu med detta problem har olika tekniker föreslagits för att generera syntetiska träningsdata automatiskt. Dessa syntetiska datagenererande tekniker kan grupperas i två kategorier: den första kategorin genererar syntetiska bilder med hjälp av datorgrafikprogram och CAD-modeller av objekten att känna igen; Den andra kategorin genererar syntetiska bilder genom att klippa objektet från en bild och klistra in det på en annan bild. Eftersom båda teknikerna har sina fördelar och nackdelar, skulle det vara intressant för industrier att undersöka mer ingående de båda metoderna. Ett vanligt fall i industriella scenarier är att upptäcka och klassificera objekt i en bild. Olika föremål som hänför sig till klasser som är relevanta i industriella scenarier är ofta oskiljbara (till exempel de är alla samma komponent). Av dessa skäl syftar detta avhandlingsarbete till att svara på frågan “Bland CAD-genereringsteknikerna, Cut-paste generationsteknikerna och en kombination av de två teknikerna, vilken teknik är mer lämplig för att generera bilder för träningsobjektdetektorer i industriellascenarier”. För att svara på forskningsfrågan föreslås två syntetiska bildgenereringstekniker som hänför sig till de två kategorierna. De föreslagna teknikerna är skräddarsydda för applikationer där alla föremål som tillhör samma klass är oskiljbara, men de kan också utökas till andra applikationer. De två syntetiska bildgenereringsteknikerna jämförs med att mäta prestanda hos en objektdetektor som utbildas med hjälp av syntetiska bilder på en testdataset med riktiga bilder. Föreställningarna för de två syntetiska datagenererande teknikerna som används för dataförökning har också uppmätts. De empiriska resultaten visar att CAD-modelleringstekniken fungerar väsentligt bättre än Cut-Paste-genereringstekniken, där syntetiska bilder är den enda källan till träningsdata (61% bättre), medan de två generationsteknikerna fungerar lika bra som dataförstoringstekniker. Dessutom visar de empiriska resultaten att modellerna som utbildats med bara syntetiska bilder utför nästan lika bra som modellen som utbildats med hjälp av riktiga bilder (7,4% sämre) och att förstora datasetet med riktiga bilder med hjälp av syntetiska bilder förbättrar modellens prestanda (9,5% bättre).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-235502
Date January 2018
CreatorsArcidiacono, Claudio Salvatore
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:593

Page generated in 0.0027 seconds