Machine learning has been employed in the automotive industry together with cameras to detect objects in surround sensing technology. You Only Look Once is a state-of-the-art object detection algorithm especially suitable for real-time applications due to its speed and relatively high accuracy compared to competing methods. Recent studies have investigated whether radar data can be used as an alternative to camera data with You Only Look Once, seeing as radars are more robust to changing environments such as various weather and lighting conditions. These studies have used 3D data from radar consisting of range, angle, and velocity, transformed into a 2D image representation, either in the Range-Angle or Range-Doppler domain. Furthermore, the processed radar image can use either a Cartesian or a polar coordinate system for the rendering. This study will combine previous studies, using You Only Look Once with Range-Angle radar images and examine which coordinate system of Cartesian or polar is most optimal. Additionally, evaluating the localization and classification performance will be done using a combination of concepts and evaluation metrics. Ultimately, the conclusion is that the Cartesian coordinate system prevails with asignificant improvement compared to polar. / Maskininlärning har sedan länge använts inom fordinsindustrin tillsammans med kameror för att upptäcka föremål och få en ökad överblick över omgivningar. You Only Look Once är en toppmodern objektdetekteringsalgoritm särskilt lämplig för realtidsapplikationer tack vare dess hastighet och relativt höga noggrannhet jämfört med konkurrerande metoder. Nyligen genomförda studier har undersökt om radardata kan användas som ett alternativ till kameradata med You Only Look Once, eftersom radar är mer robusta för ändrade miljöer så som olika väder- och ljusförhållanden. Dessa studier har utnyttjat 3D data från radar bestående av avstånd, vinkel och hastighet, som transformerats till en 2D bildrepresentation, antingen i domänen Range-Angle eller Range-Doppler. Vidare kan den bearbetade radarbilden använda antingen ett kartesiskt eller ett polärt koordinatsystem för framställningen. Denna studie kommer att kombinera tidigare studier om You Only Look Once med Range-Angle radarbilder och undersöka vilket koordinatsystem, kartesiskt eller polärt, som är mest optimalt att använda för människodetektering med radar. Dessutom kommer en utvärdering av lokaliserings- och klassificeringsförmåga att göras med hjälp av en blandning av koncept och olika mått på prestanda. Slutsatsen gjordes att det kartesiska koordinatsystemet är det bättre alternativet med en betydligt högre prestanda jämfört med det polära koordinatsystemet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-310425 |
Date | January 2022 |
Creators | Phan, Anna, Medina, Rogelio |
Publisher | KTH, Skolan för industriell teknik och management (ITM) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2021:509 |
Page generated in 0.0025 seconds