Made available in DSpace on 2016-06-02T19:06:20Z (GMT). No. of bitstreams: 1
6477.pdf: 3193803 bytes, checksum: 2bf85c80b2865f8b7efd9d6eeb6aa172 (MD5)
Previous issue date: 2013-11-28 / Financiadora de Estudos e Projetos / Recently, there is an enormous amount of scientific material written in textual format and published in electronic ways (paper on proceedings and articles on journals). In the biomedical field, researchers need to analyse a vast amount of information in order to update their knowledges, in order to get more precise diagnostics and propose more modern and effective treatments. The task of getting knowledge is extremely onerous and the manual process to annotate relationships and to propose novel hypothesis for treatments becomes very slow and error-prone. In this sense, as a result of this master s research it is proposed a method to extract cause and effect semantic relationships in sentences of scientific papers of the biomedical domain. The goal of this work is to propose and implements a solution for: (1) to extract terms from the biomedical domain (genes, proteins, chemical components, structures and anatomical processes, cell components and strutures, and treatmens), (2) to identify existing relationships on the texts, from the extracted terms, and (3) to suggest a knowledge network based on the relations of cause and effect . Over the approach using textual patterns, our proposed method had extracted semantic relations with a precision of 94,83 %, recall of 98,10 %, F-measure of 96,43 %. / Atualmente, existe uma enorme quantidade de material científico escrito em formato textual e publicado em meios eletrônicos (artigos em anais de eventos e periódicos). Na área biomédica, pesquisadores necessitam assimilar uma grande parte deste conteúdo com a finalidade de se atualizarem e, por conseguinte realizarem diagnosticos mais precisos e aplicar tratamentos mais modernos e eficazes. A tarefa de obtenção de conhecimento é bastante onerosa e o processo manual para anotar relacionamentos e propor novas hipóteses de tratamentos torna-se muito lento. Neste sentido, como resultado desta pesquisa de mestrado, foi proposto um método para a extração de relacionamentos semânticos do tipo causa e efeito em artigos científicos do domínio biomédico. Mais especificamente, o objetivo deste trabalho é propor e implementar uma solução para (1) extrair termos do domínio biomédico de documentos científicos (genes, componentes químicos, proteínas, estruturas e processos anatômicos, componentes e estruturas celulares e tratamentos), (2) identificar relacionamentos existentes nos textos, com base nos termos extraídos, e (3) sugerir uma rede de conhecimento baseada nos relacionamentos extraídos. Através de uma abordagem utilizando regras e padrões textuais, o método proposto extraiu relacionamentos semânticos com uma precisão de 94,83 %, cobertura de 98,10 % e Medida-F de 96,43 %.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/591 |
Date | 28 November 2013 |
Creators | Scheicher, Ricardo Brigato |
Contributors | Ciferri, Ricardo Rodrigues |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Ciência da Computação, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds