<p>The first method for DNA analysis in forensics was presented in 1985. Since then, the introduction of the polymerase chain reaction (PCR) has rendered possible the analysis of small amounts of DNA and automated sequencing and fragment analysis techniques have facilitated the analyses. In most cases short tandemly repeated regions (STRs) of nuclear DNA are analysed in forensic investigations, but all samples cannot be successfully analysed using this method. For samples containing minute amounts of DNA or degraded DNA, such as shed hairs, analysis of mitochondrial DNA (mtDNA) is generally more successful due to the presence of thousands of copies of mtDNA molecules per cell.</p><p>In Sweden, ~40 % of all households have cats or dogs. With ~9 million humans shedding ~100 scalp hairs per day, and ~1.6 million cats and ~1 million dogs shedding hairs it is not surprising that shed hairs are one of the most common biological evidence found at crime scenes. However, the match probability for domestic dog mtDNA analysis has only been investigated in a few minor studies. Furthermore, although breed –sequence correlations of the noncoding mtDNA control region (CR) have been analysed in a few studies, showing limited correlations, no largescale studies have been performed previously. Thus, there have not been any comprehensive studies of forensic informativity of dog mtDNA. In the two papers presented in this thesis we have tried to lay a foundation for forensic use of analysis of domestic dog mtDNA. In the first paper, CR sequences were analysed and the exclusion capacity was investigated for a number of different populations. This is also the first comprehensive study of the correlation between mtDNA CR type and breed, type, and geographic origin of domestic dogs. Since the exclusion capacity for analysis of domestic dog CR sequences is relatively low, it was investigated in the second paper to what extent the discrimination power is improved by analysis of coding sequence. The exclusion capacity improved considerably when 3,000 base pairs of coding sequences where analysed in addition to CR sequences. This study will hopefully work as a basis for future development of analysis of dog mtDNA for forensic purposes.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-310 |
Date | January 2005 |
Creators | Angleby, Helen |
Publisher | KTH, School of Biotechnology (BIO) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Page generated in 0.0018 seconds