L’organisation non-aléatoire du noyau des cellules eucaryotes et la compaction de l’ADN en chromatine plus ou dense peuvent influencer de nombreuses fonctions liées au métabolisme de l’ADN, y compris la stabilité du génome. Les cassures double-brin sont les dommages à l’ADN les plus néfastes pour la cellule. Pour préserver l’intégrité de leur génome, les cellules eucaryotes ont développé des mécanismes de réparation des cassures double-brin qui sont conservés de la levure à l’homme. Parmi ceux-ci, la recombinaison homologue utilise une séquence homologue intacte présente ailleurs dans le génome et peut se diviser en deux sous voies de réparation. La conversion génique transfère l’information génétique d’une molécule à son homologue, tandis que le Break Induced Replication (BIR) établit une fourche de réplication qui peut procéder jusqu’à la fin du chromosome.Mon travail de thèse s’est attaché à caractériser la contribution du statut chromatinien et de l’organisation tridimensionnelle du génome à la réparation des cassures double-brin. L’organisation du noyau de la levure S. cerevisiae ainsi que la propagation de l’hétérochromatine au niveau des régions subtélomériques peuvent être modifiées via la surexpression des protéines Sir3 et sir3A2Q. Nous avons montré que le groupement des télomères accroit la conversion génique entre deux séquences subtélomériques, soulignant le rôle clé de la proximité spatiale et de la recherche d’homologie. Nous avons également constaté que la présence d’hétérochromatine au niveau du site de cassure limite la résection, ce qui permet une disparition plus lente des extrémités, qui resteraient disponibles plus longtemps pour réaliser la recherche d’homologie et achever la réparation. Enfin, nous avons observé que la présence d’hétérochromatine au site donneur diminue l’efficacité de recombinaison et qu’elle doit moduler une étape commune aux deux voies de réparation, à savoir l’invasion de brin. Ces travaux nous ont permis de décrire de nouvelles voies de régulation de la réparation de l’ADN. / The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end.My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at subtelomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that heterochromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLS182 |
Date | 29 June 2016 |
Creators | Batté, Amandine |
Contributors | Université Paris-Saclay (ComUE), Dubrana, Karine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.002 seconds