Return to search

Biodegradation Experiments of Polymeric Materials: Monitoring and Analysis / Bionedbrytning av Polymera Material: Undersökning och Analys

Plastskräp har blivit ett global problem på grund av nedskräpning och otillräcklig avfallshantering. Användning av biologiskt nedbrytbart material kan underlätta problemet, även om det inte är en universallösning. Produkter gjorda av biologiskt nedbrytbart material skall ändå till avfallshantering eftersom nedbrytningen kan vara långvarig och variera mycket beroende av omgivningen. Därmed är användningen av biologiskt nedbrytbart material endast berättigat då det är svårt att samla in materialet eller avskilja det från organiskt material. Studiens mål var att undersöka biologiskt nedbrytbara material som kan användas i produkter som fungerar under många olika driftsförhållanden och inte kan återställas efter användning. I den litterära delen av denna studie definieras nedbrytning genom egenskaper och förhållanden som påverkar nedbrytningsprocessen. Nedbrytning av polyestrar och cellulosa och de standardprocessarna som används i nedbrytningsexperimenten betraktades. Standardprocesserna för nedbrytning studerades för att få en klarare inblick i den eftertraktade nedbrytningsgraden och de standardiserade förhållandena för nedbrytningen i olika miljöer. En sammanfattning av olika nedbrytningsexperiment och analysmetoder är också inkluderade för att försäkra att experimenten som utfördes är både giltiga och jämförbara med andra forskningsresultat inom fältet. I detta forskningsprojekt utfördes nedbrytningsexperiment i färskvatten- och hemkompostmiljöer. Målet med projektet var att bedöma ifall materialen kunde brytas ned i ett brett spektrum av miljöer, ifall de var mindre skadliga för naturen än konventionella material som används av dagens industri och för att uppskatta nedbrytningstakten. Nedbrytningstiden var 140 dagar och experimentet utfördes med 10 olika material: betecknade som A-J. Materialen analyserades 8 gånger under nedbrytningsperioden förutom materialen I och J som analyserades en gång efter 140 dagar. Materialen analyserades mekaniskt, strukturellt och termiskt med hjälp av dragprovning, FTIR och DSC. Provernas viktförändring bestämdes också. Nedbrytning observerades visuellt från provernas yta och genom mekaniska prover. Materialen som placerades i hemkomposten visade klara tecken på nedbrytning då färgen hade förändrats och förstärkningsfibrerna hade blivit synliga. Materialen som placerats i hemkompostmiljö visade också klara tecken på tillväxt av mikroorganismer och biomassa som uppstått på ytan av materialen. Sammanfattningsvist, visade materialen B, C och G de mest lovande resultaten med klara tecken på biologisk nedbrytning och de hade en snabbare nedbrytningstakt än de andra materialen som undersöktes. Material D visade klara tecken på biologisk nedbrytning på ytan men dess nedbrytningstakt var uppskattad att vara mycket långsammare. Därmed rekommenderas det att använda material A, B, D och G istället för konventionella icke biologiskt nedbrytbara material. Dessa material har potential att sänka den negativa inverkan och de långsiktiga riskerna av plastskräp för miljön. / Plastic debris has become a global crisis due to littering and misplaced waste management. The use of biodegradable materials can ease the problem, but it is not always the answer. Products made of biodegradable materials are still to be waste managed since biodegradation can be a long process and is highly dependent on the environment conditions. Hence, the use of biodegradable materials is justified only when retrieving the product after use is impossible or prohibitively expensive or separating it from organic matter is difficult. This study was made to investigate biodegradable materials that can be used in products that are operating in broad range of operational conditions and cannot be retrieved back after use in most cases. In the literature part of this study the biodegradation is defined along with properties and conditions that affect the biodegradation process. Biodegradation of polyesters and cellulose, and standards used in the biodegradation experiments were reviewed. Biodegradation standards were studied in order to have a clearer picture of the pursued degree of biodegradation and standardized properties in the biodegradation experiments. Review of different biodegradation tests and analysis methods are included as well to ensure that the experiments performed in this work are valid and comparable with other biodegradation studies.  In this study, the biodegradation experiment was conducted in freshwater and home compost environments. The aim was to determine if the materials were able to biodegrade in wide range of environments, to make sure they are less harmful than the conventional materials used in the industry and to estimate the rate of biodegradation. The duration of the experiments were 140 days with 10 different materials: A – J. The materials were analyzed 8 times during the aging period, except materials I and J, which were analyzed only once after 140 days. The samples were analyzed mechanically, structurally, and thermally using tensile test, FTIR and DSC measurements, respectively. Also, the samples weight changes were analyzed.  The degradation was visually observed from the surfaces of the samples and from mechanical testing in both experimental environments. Home compost environment showed clear signs of biodegradation where reinforcement fibers became visible and changed the color of some of the samples. Also, home compost samples had microorganisms growing on them, and biomass was developing around them. To conclude, material B, C and G had the most promising results with clear signs of biodegradation and had faster estimated biodegradation rate compared with the other studied materials. Material D had signs of biodegradation on the surface as well. However, the biodegradation rate was estimated to be much slower. In conclusion, it is recommended to use the studied materials A, B, D and G instead of the conventional non-biodegradable polymers. These materials have potential to lower the negative impact and long-term risks of plastic debris to the environment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-304985
Date January 2021
CreatorsOjala, Sini
PublisherKTH, Fiber- och polymerteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2021:244

Page generated in 0.0036 seconds