Return to search

Binding properties of Hfq to RNA and genomic DNA and the functional implications

The bacterial RNA binding protein Hfq is a key component for bacterial sRNA mediated riboregulation of mRNA expression. A kinetic and thermodynamic analysis of Hfq binding to its sRNA targets DsrA, RprA, and OxyS, and to its mRNA target rpoS was carried out. The ability of Hfq to significantly enhance the stability of the DsrA-rpoS and RprA-rpoS complex was demonstrated, and the entire untranslated leader region of rpoS was shown to be important for Hfq binding and in Hfq facilitated sRNA-mRNA duplex formation. Hfq was not shown to enhance OxyS binding to rpoS. DsrA and OxyS were shown to bind mostly to the proximal surface region of Hfq, while RprA bound to both proximal and distal surface regions. The rpoS leader region was shown to possess at least two distinct Hfq binding sites, with one site binding the proximal region and the other to the distal region of Hfq. These sites were shown to be important for Hfq to stimulate DsrA-rpoS binding. The outer-circumference region and the C-terminal tail of Hfq does not play a major role in binding DsrA, RprA, OxyS and rpoS, and in stimulating DsrA-rpoS binding. Evidence was obtained implicating Hfq to bind DsrA, RprA, OxyS, and oligo rA18 in a 1:1 protein to RNA stoichiometry. Binding properties of Hfq to E. coli genomic DNA were examined. Double stranded DNA was shown to bind mostly on the distal surface region and the C-terminal tail of Hfq with an affinity 10 fold less than Hfq targeted RNA. Single stranded DNA binds Hfq more tightly than double stranded DNA and binding seems to be sequence specific. Evidence indicates Hfq binds certain sequences of the E. coli genome.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/41075
Date10 May 2011
CreatorsUpdegrove, Taylor Blanton
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds