In this thesis we explore the concepts and components which can be used as individual building blocks for producing immersive virtual reality (VR) content from a single RGB-D sensor. We identify the properties of immersive VR videos and propose a system composed of a foreground/background separator, a dynamic scene re-constructor and a shape completer.
We initially explore the foreground/background separator component in the context of video summarization. More specifically, we examined how to extract trajectories of moving objects from video sequences captured with a static camera. We then present a new approach for video summarization via minimization of the spatial-temporal projections of the extracted object trajectories. New evaluation criterion are also presented for video summarization. These concepts of foreground/background separation can then be applied towards VR scene creation by extracting relative objects of interest.
We present an approach for the dynamic scene re-constructor component using a single moving RGB-D sensor. By tracking the foreground objects and removing them from the input RGB-D frames we can feed the background only data into existing RGB-D SLAM systems. The result is a static 3D background model where the foreground frames are then super-imposed to produce a coherent scene with dynamic moving foreground objects. We also present a specific method for extracting moving foreground objects from a moving RGB-D camera along with an evaluation dataset with benchmarks.
Lastly, the shape completer component takes in a single view depth map of an object as input and "fills in" the occluded portions to produce a complete 3D shape. We present an approach that utilizes a new data minimal representation, the additive depth map, which allows traditional 2D convolutional neural networks to accomplish the task. The additive depth map represents the amount of depth required to transform the input into the "back depth map" which would exist if there was a sensor exactly opposite of the input. We train and benchmark our approach using existing synthetic datasets and also show that it can perform shape completion on real world data without fine-tuning. Our experiments show that our data minimal representation can achieve comparable results to existing state-of-the-art 3D networks while also being able to produce higher resolution outputs.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39663 |
Date | 26 September 2019 |
Creators | Lai, Po Kong |
Contributors | Laganière, Robert |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0025 seconds