This paper presents a Lagrangian formulation for studying the dynamics and control of the proposed Space Station based Mobile Servicing System (MSS) for a particular case of in plane libration and maneuvers. The simplified case is purposely considered to help focus on the effects of structural and joint flexibility parameters of the MSS on the complex interactions between the station and manipulator dynamics
during slewing and translational maneuvers. The response results suggest that under critical combinations of parameters, the system can become unstable. During maneuvers, the deflection of the MSS can become excessive, leading to positioning error of the payload. At the same time the libration error can also be significant. A linear quadratic regulator is designed to control the deflection of the manipulator and maintain the station at its operating configuration. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/29466 |
Date | January 1990 |
Creators | Chan, Julius Koi Wah |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0056 seconds