Return to search

Design of Novel Devices and Circuits for Electrostatic Discharge Protection Applications in Advanced Semiconductor Technologies

Electrostatic Discharge (ESD), as a subset of Electrical Overstress (EOS), was reported to be in charge of more than 35% of failure in integrated circuits (ICs). Especially in the manufacturing process, the silicon wafer turns out to be a functional ICs after numerous physical, chemical and mechanical processes, each of which expose the sensitive and fragile ICs to ESD environment. In normal end-user applications, ESD from human and machine handling, surge and spike signals in the power supply, and wrong supplying signals, will probably cause severe damage to the ICs and even the whole systems. Generally, ESD protections are evaluated after wafer and even system fabrication, increasing the development period and cost if the protections cannot meet customer's requirements. Therefore, it is important to design and customize robust and area-efficient ESD protections for the ICs at the early development stage. As the technologies generally scaling down, however, ESD protection clamps remain comparable area consumption in the recent years because they provide the discharging path for the ESD energy which rarely scales down. Diode is the most simple and effective device for ESD protection in ICs, but the usage is significantly limited by its low turn-on voltage. MOS devices can be triggered by a dynamic-triggered RC circuit for IOs operating at low voltage, while the one triggered by a static-triggered network, e.g., zener-resistor circuit or grounded-gate configuration, provides a high trigger voltage for high-voltage applications. However, the relatively low current discharging capability makes MOS devices as the secondary choice. Silicon-controlled rectifier (SCR) has become famous due to its high robustness and area efficiency, compared to diode and MOS. In this dissertation, a comprehensive design methodology for SCR based on simulation and measurement are presented for different advanced commercial technologies. Furthermore, an ESD clamp is designed and verified for the first time for the emerging GaN technology. For the SCR, no matter what modification is going to be made, the first concern when drawing the layout is to determine the layout geometrical style, finger width and finger number. This problem for diode and MOS device were studied in detail, so the same method was usually used in SCR. The research in this dissertation provides a closer look into the metal layout effect to the SCR, finding out the optimized robustness and minimized side-effect can be obtained by using specific layout geometry. Another concern about SCR is the relatively low turn-on speed when the IOs under protection is stressed by ESD pulses having very fast rising time, e.g., CDM and IEC 61000-4-2 pulses. On this occasion a large overshoot voltage is generated and cause damage to internal circuit component like gate oxides of MOS devices. The key determination of turn-on speed of SCR is physically investigated, followed by a novel design on SCR by directly connecting the Anode Gate and Cathode Gate to form internal trigger (DCSCR), with improved performance verified experimentally in this dissertation. The overshoot voltage and trigger voltage of the DCSCR will be significantly reduced, in return a better protection for internal circuit component is offered without scarifying neither area or robustness. Even though two SCR's with single direction of ESD current path can be constructed in reverse parallel to form bidirectional protection to pins, stand-alone bidirectional SCR (BSCR) is always desirable for sake of smaller area. The inherent high trigger voltage of BSCR that only fit in high-voltage technologies is overcome by embedding a PMOS transistor as trigger element, making it highly suitable for low-voltage ESD protection applications. More than that, this modification simultaneously introduces benefits including high robustness and low overshoot voltage. For high voltage pins, however, it presents another story for ESD designs. The high operation voltages require that a high trigger voltage and high holding voltage, so as to reduce the false trigger and latch-up risk. For several capacitive pins, the displacement current induced by a large snapback will cause severe damage to internal circuits. A novel design on SCR is proposed to minimize the snapback with adjustable trigger and holding voltage. Thanks to the additional a PIN diode, the similar high robustness and stable thermal leakage performance to SCR is maintained. For academic purpose of ESD design, it is always difficult to obtain the complete process deck in TCAD simulation because those information are highly confidential to the companies. Another challenge of using TCAD is the difficulty of maintaining the accuracy of physics models and predicting the performance of the other structures. In this dissertation a TCAD-aid ESD design methodology is used to evaluate ESD performance before the silicon shuttle. GaN is a promising material for high-voltage high-power RF application compared to the GaAs. However, distinct from GaAs, the leaky problem of the schottky junction and the lack of choice of passive/active components in GaN technology limit the ESD protection design, which will be discussed in this dissertation. However, a promising ESD protection clamp is finally developed based on depletion-mode pHEMT with adjustable trigger voltage, reasonable leakage current and high robustness.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2435
Date01 January 2015
CreatorsWang, Zhixin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0024 seconds