Return to search

In-vivo Human Head Conductivity Estimation by SEEG and EEG Recorded in Simultaneous with Intracerebral Electrical Stimulation / Estimation de conductivités cérébrales in vivo chez l'homme à partir de la stimulation électrique et de mesures EEG intracérébrales et de scalp

La localisation de source d'EEG devient un outil important pour traiter les patients atteints d'épilepsie en localisant les zones épileptogènes avant d'effectuer une chirurgie de résection. Compte tenu d'un modèle de tête direct, la localisation de la source EEG est réalisée en résolvant le problème inverse. Le modèle de tête direct est un modèle biophysique de tête plus ou moins complexe qui décrit la distribution électrique. En considérant la propagation électrique expliquant la distribution de potentiels, outre la numérisation, le modèle nécessite le réglage deux paramètres lesquels sont la géométrie du modèle de tête et la valeur des conductivités de chaque compartiment du modèle de tête. En raison des progrès computationnel et des techniques d'imagerie (comme l'IRM et la CT), il est possible de générer des modèles de tête humaine qui représentent avec une grande précision la géométrie de la tête réelle. Cependant, il existe une incertitude sur les valeurs de conductivité de chaque compartiment et la méthode avec laquelle ils devraient être estimés. Dans la littérature, les valeurs communes pour les conductivités proviennent principalement des expériences in-vitro. Dans ce travail, nous effectuons une estimation de la conductivité in-vivo à partir de données EEG/SEEG/Stimulation électrique de trois patients épileptiques. Ces données sont constituées des images IRM et des CT SCAN pour la construction d'un modèle de tête FEM à cinq compartiments pour chaque patient, ainsi que les enregistrements SEEG et EEG qui ont été acquis en même temps que la stimulation électrique intracérébrale (IES). L'originalité de ce travail réside dans l'évaluation de la performance de l'estimation des conductivités in-vivo par des mesures EEG et / ou SEEG en fonction de différents paramètres spatiaux et de la localisation des IES. Le travail se compose de trois parties principales: la première partie vise à déterminer la méthode d’optimisation sous contraintes la plus robuste parmi les algorithmes courants pour optimiser les paramètres du modèle direct de tête. L'objectif de la deuxième partie est d'analyser la sensibilité des valeurs de conductivité à différentes conditions sur la position de stimulation, le conditionnement du problème avec les positions de mesure et leur nombre et le nombre de compartiments. Alors que dans la partie finale, les conductivités d'un modèle de tête FEM isotrope et homogène à cinq compartiments ont été estimées avec des paramètres précédemment déterminés pour les trois patients. Enfin, l'effet de la fréquence de stimulation sur les conductivités estimées est analysé / EEG source localization is becoming an important tool for treating epileptic patients by localizing the epileptogenic zones before performing a resection surgery. Given a forward head model, EEG source localization is performed by solving the inverse problem. The forward head model is a biophysical model which describes the electrical distribution in the human head. When considering the propagation as the only way for the current distribution to move in the head, the focus is directed primarily on two parameters for having an accurate forward head model. These parameters are: the geometry of the head model and the conductivity value of each compartment of the head model. Due to the recent advances in computers and imaging techniques (like MRI and CT), it is possible to generate human head models that represent with a high accuracy the geometry of the real head. However, there is still an argument about the conductivity values and the method by which it should be estimated. In literature, the common values for conductivities come mostly from in-vitro experiments. In this work we are performing in-vivo conductivity estimation by considering the data of three epileptic patients. This data consists of MR images and CT scans for building a five-compartment FEM head model for each patient along with SEEG and EEG recordings that were acquired in simultaneous with intracerebral electrical stimulation (IES). The originality of this work lies in evaluating the performance of in-vivo conductivity estimation by EEG and/or SEEG measurements in function of different spatial parameters and locations of the IES. The following work consists of three major parts: the first part aims to determine the most robust optimization algorithm among common algorithms for optimizing the forward head model. The objective of the second part is to analyze the sensitivity of the conductivity values given different conditions on stimulation position, measurement positions and number of compartments. While in the final part, the conductivities of an isotropic and homogeneous five-compartment FEM head model were estimated with previously selected parameters for three drug-resistant epileptic patients. Finally the effect of changing the stimulation frequency on the estimated conductivities was determined

Identiferoai:union.ndltd.org:theses.fr/2017LORR0304
Date05 December 2017
CreatorsAltakroury, Hamza Fawzi
ContributorsUniversité de Lorraine, Louis-Dorr, Valérie, Koessler, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds