• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-vivo Human Head Conductivity Estimation by SEEG and EEG Recorded in Simultaneous with Intracerebral Electrical Stimulation / Estimation de conductivités cérébrales in vivo chez l'homme à partir de la stimulation électrique et de mesures EEG intracérébrales et de scalp

Altakroury, Hamza Fawzi 05 December 2017 (has links)
La localisation de source d'EEG devient un outil important pour traiter les patients atteints d'épilepsie en localisant les zones épileptogènes avant d'effectuer une chirurgie de résection. Compte tenu d'un modèle de tête direct, la localisation de la source EEG est réalisée en résolvant le problème inverse. Le modèle de tête direct est un modèle biophysique de tête plus ou moins complexe qui décrit la distribution électrique. En considérant la propagation électrique expliquant la distribution de potentiels, outre la numérisation, le modèle nécessite le réglage deux paramètres lesquels sont la géométrie du modèle de tête et la valeur des conductivités de chaque compartiment du modèle de tête. En raison des progrès computationnel et des techniques d'imagerie (comme l'IRM et la CT), il est possible de générer des modèles de tête humaine qui représentent avec une grande précision la géométrie de la tête réelle. Cependant, il existe une incertitude sur les valeurs de conductivité de chaque compartiment et la méthode avec laquelle ils devraient être estimés. Dans la littérature, les valeurs communes pour les conductivités proviennent principalement des expériences in-vitro. Dans ce travail, nous effectuons une estimation de la conductivité in-vivo à partir de données EEG/SEEG/Stimulation électrique de trois patients épileptiques. Ces données sont constituées des images IRM et des CT SCAN pour la construction d'un modèle de tête FEM à cinq compartiments pour chaque patient, ainsi que les enregistrements SEEG et EEG qui ont été acquis en même temps que la stimulation électrique intracérébrale (IES). L'originalité de ce travail réside dans l'évaluation de la performance de l'estimation des conductivités in-vivo par des mesures EEG et / ou SEEG en fonction de différents paramètres spatiaux et de la localisation des IES. Le travail se compose de trois parties principales: la première partie vise à déterminer la méthode d’optimisation sous contraintes la plus robuste parmi les algorithmes courants pour optimiser les paramètres du modèle direct de tête. L'objectif de la deuxième partie est d'analyser la sensibilité des valeurs de conductivité à différentes conditions sur la position de stimulation, le conditionnement du problème avec les positions de mesure et leur nombre et le nombre de compartiments. Alors que dans la partie finale, les conductivités d'un modèle de tête FEM isotrope et homogène à cinq compartiments ont été estimées avec des paramètres précédemment déterminés pour les trois patients. Enfin, l'effet de la fréquence de stimulation sur les conductivités estimées est analysé / EEG source localization is becoming an important tool for treating epileptic patients by localizing the epileptogenic zones before performing a resection surgery. Given a forward head model, EEG source localization is performed by solving the inverse problem. The forward head model is a biophysical model which describes the electrical distribution in the human head. When considering the propagation as the only way for the current distribution to move in the head, the focus is directed primarily on two parameters for having an accurate forward head model. These parameters are: the geometry of the head model and the conductivity value of each compartment of the head model. Due to the recent advances in computers and imaging techniques (like MRI and CT), it is possible to generate human head models that represent with a high accuracy the geometry of the real head. However, there is still an argument about the conductivity values and the method by which it should be estimated. In literature, the common values for conductivities come mostly from in-vitro experiments. In this work we are performing in-vivo conductivity estimation by considering the data of three epileptic patients. This data consists of MR images and CT scans for building a five-compartment FEM head model for each patient along with SEEG and EEG recordings that were acquired in simultaneous with intracerebral electrical stimulation (IES). The originality of this work lies in evaluating the performance of in-vivo conductivity estimation by EEG and/or SEEG measurements in function of different spatial parameters and locations of the IES. The following work consists of three major parts: the first part aims to determine the most robust optimization algorithm among common algorithms for optimizing the forward head model. The objective of the second part is to analyze the sensitivity of the conductivity values given different conditions on stimulation position, measurement positions and number of compartments. While in the final part, the conductivities of an isotropic and homogeneous five-compartment FEM head model were estimated with previously selected parameters for three drug-resistant epileptic patients. Finally the effect of changing the stimulation frequency on the estimated conductivities was determined
2

Modèles biomathématiques des effets de la stimulation électrique directe et indirecte sur la dynamique neuronale : application à l'épilepsie

Mina, Faten 03 December 2013 (has links) (PDF)
Les effets de la stimulation électrique sur la dynamique des systèmes neuronaux épileptiques sont encore méconnus. L'objectif principal de cette thèse est de progresser dans la compréhension des effets attendus en fonction des paramètres de stimulation. Dans la première partie du manuscrit, un modèle mésoscopique (population neuronale) de la boucle thalamocorticale est proposé pour étudier en détails les effets de stimulation indirecte (thalamique), avec une attention particulière sur la fréquence. Des signaux EEG intracérébraux acquis chez un patient souffrant d'épilepsie pharmaco-résistante ont d'abord été analysés selon une approche temps-fréquence (algorithme de type Matching Pursuit). Les caractéristiques extraites ont ensuite été utilisées pour identifier les paramètres du modèle proposé en utilisant une approche exhaustive (minimisation de la distance entre signaux simulés et réels). Enfin, le comportement dynamique du modèle a été étudié en fonction de la fréquence du signal de stimulation. Les résultats montrent que le modèle reproduit fidèlement les signaux observés ainsi que la relation non linéaire entre la fréquence de stimulation et ses effets sur l'activité épileptique. Ainsi, dans le modèle, la stimulation à basse fréquence (SBF ; fs <20 Hz) , et la stimulation à haute fréquence (SHF ; fs > 60 Hz) permettent d'abolir les dynamiques épileptiques, alors que la stimulation à fréquence intermédiaire (SFI; 20 < fs < 60 Hz) n'ont pas d'effet , comme observé cliniquement. De plus, le modèle a permis d'identifier des mécanismes cellulaires et de réseau impliqués dans les effets modulateurs de la stimulation. La deuxième partie du manuscrit porte sur les effets polarisants de la stimulation directe en courant continu (CC) de la zone épileptogène dans le contexte de l'épilepsie mésiale du lobe temporal (EMLT). Un modèle biomathématique bien connu de la région hippocampique CA1 a été adapté pour cette étude. Deux modifications sont été intégrées au modèle, 1) une représentation physiologique de l'occurrence des décharges paroxystiques hippocampiques (DPH) basée sur une identification de leurs statistiques d'occurrence basée sur des données expérimentales (modèle in vivo d'EMLT)et 2) une représentation électrophysiologiquement plausible de la stimulation prenant en compte l'interface électrode-électrolyte. L'analyse de la sortie du modèle en fonction de la polarité de stimulation, a montré qu'une réduction (resp. augmentation) significative des DPH (en durée et en fréquence) sous stimulation anodale (resp. cathodole). Un protocole expérimental a ensuite été proposé et utilisé afin de valider les prédictions du modèle.
3

Modèles biomathématiques des effets de la stimulation électrique directe et indirecte sur la dynamique neuronale : application à l'épilepsie / Modeling the effects of direct and indirect electrical stimulation on neuronal dynamics : application to epilepsy

Mina, Faten 03 December 2013 (has links)
Les effets de la stimulation électrique sur la dynamique des systèmes neuronaux épileptiques sont encore méconnus. L'objectif principal de cette thèse est de progresser dans la compréhension des effets attendus en fonction des paramètres de stimulation. Dans la première partie du manuscrit, un modèle mésoscopique (population neuronale) de la boucle thalamocorticale est proposé pour étudier en détails les effets de stimulation indirecte (thalamique), avec une attention particulière sur la fréquence. Des signaux EEG intracérébraux acquis chez un patient souffrant d'épilepsie pharmaco-résistante ont d'abord été analysés selon une approche temps-fréquence (algorithme de type Matching Pursuit). Les caractéristiques extraites ont ensuite été utilisées pour identifier les paramètres du modèle proposé en utilisant une approche exhaustive (minimisation de la distance entre signaux simulés et réels). Enfin, le comportement dynamique du modèle a été étudié en fonction de la fréquence du signal de stimulation. Les résultats montrent que le modèle reproduit fidèlement les signaux observés ainsi que la relation non linéaire entre la fréquence de stimulation et ses effets sur l'activité épileptique. Ainsi, dans le modèle, la stimulation à basse fréquence (SBF ; fs <20 Hz) , et la stimulation à haute fréquence (SHF ; fs > 60 Hz) permettent d'abolir les dynamiques épileptiques, alors que la stimulation à fréquence intermédiaire (SFI; 20 < fs < 60 Hz) n'ont pas d'effet , comme observé cliniquement. De plus, le modèle a permis d'identifier des mécanismes cellulaires et de réseau impliqués dans les effets modulateurs de la stimulation. La deuxième partie du manuscrit porte sur les effets polarisants de la stimulation directe en courant continu (CC) de la zone épileptogène dans le contexte de l'épilepsie mésiale du lobe temporal (EMLT). Un modèle biomathématique bien connu de la région hippocampique CA1 a été adapté pour cette étude. Deux modifications sont été intégrées au modèle, 1) une représentation physiologique de l'occurrence des décharges paroxystiques hippocampiques (DPH) basée sur une identification de leurs statistiques d'occurrence basée sur des données expérimentales (modèle in vivo d'EMLT)et 2) une représentation électrophysiologiquement plausible de la stimulation prenant en compte l'interface électrode-électrolyte. L'analyse de la sortie du modèle en fonction de la polarité de stimulation, a montré qu'une réduction (resp. augmentation) significative des DPH (en durée et en fréquence) sous stimulation anodale (resp. cathodole). Un protocole expérimental a ensuite été proposé et utilisé afin de valider les prédictions du modèle. / The effects of electrical stimulation on the dynamics of epileptic neural systems are still unknown. The main objective of this thesis is to progress the understanding of the expected effects as a function of stimulation parameters. In the first part of the manuscript, a mesoscopic model (neural population) of the thalamocortical loop is proposed to study in details the effects of indirect stimulation (thalamic), with a particular attention to stimulation frequency. Intracerebral EEG signals acquired from a patient with drug-resistant epilepsy were first analyzed using a time-frequency approach (Matching Pursuit algorithm). The extracted features were then used to optimize the parameters of the proposed model using a Brute-Force approach (minimizing the distance between simulated and real signals). Finally, the dynamical behavior of the model was studied as a function of the frequency of the stimulation input. The results showed that the model reproduces the real signals as well as the nonlinear relationship between the frequency of stimulation and its effects on epileptic dynamics. Thus, in the model, low-frequency stimulation (LFS; fs <20 Hz) and high-frequency stimulation (HFS; fs > 60 Hz) suppress epileptic dynamics, whereas intermediate-frequency stimulation (IFS; 20 < fs <60 Hz) has no effect, as observed clinically. In addition, the model was used to identify the cellular and network mechanisms involved in the modulatory effects of stimulation. The second part of the manuscript addresses the polarizing effects of direct current (DC) stimulation of the epileptogenic zone in the context of the mesial temporal lobe epilepsy (MTLE). A well-known computational model of the hippocampal CA1 region was adapted for this study. Two modifications were added to the model: 1) a physiological representation of the occurrence of hippocampal paroxysmal discharges (HPD) based on the statistical identification of their occurrence in experimental data (in vivo model of MTLE) and 2) an electrophysiologically plausible representation of the stimulation inputs taking into account the electrode-electrolyte interface. The analysis of the model output as a function of the polarity of stimulation, showed a significant reduction (resp. increase) of HPDs (duration and frequency) in anodal stimulation (resp. cathodol). An experimental protocol was then proposed and used to validate the model predictions.
4

Modulation centrale du fonctionnement cochléaire chez l’humain : activation et plasticité / Central modulation of cochlear functioning in human : activation and plasticity

Perrot, Xavier 27 April 2009 (has links)
Le système auditif possède deux particularités. En périphérie, les mécanismes cochléaires actifs (MCA), sous-tendus par la motilité des cellules ciliées externes (CCE), interviennent dans la sensibilité auditive et la sélectivité fréquentielle. Sur le versant central, le système efférent olivocochléaire médian (SEOCM), qui se projette sur les CCE et module les MCA, améliore la perception auditive en milieu bruité. Sur le plan exploratoire, ces deux processus peuvent être évalués grâce aux otoémissions acoustiques provoquées (OEAP) et leur suppression controlatérale. Par ailleurs, des résultats expérimentaux chez l’animal ont montré l’existence d’un rétrocontrôle exercé par le système auditif corticofuge descendant (SACD) sur la cochlée, via le SEOCM.Le présent travail comporte trois études réalisées chez l’humain, visant à explorer les interactions entre SACD, SEOCM et MCA. Les études 1 et 2, utilisant une méthodologie innovante chez des patients épileptiques réalisant une stéréo-électroencéphalographie, ont révélé un effet atténuateur différentiel de la stimulation électrique intracérébrale sur l’amplitude des OEAP, en fonction des modalités de stimulation, ainsi qu’une variabilité de cet effet selon les caractéristiques de l’épilepsie. L’étude 3 a montré un renforcement bilatéral de l’activité du SEOCM chez des musiciens professionnels.Pris dans leur ensemble, ces résultats fournissent d’une part, des arguments directs et indirects en faveur de l’existence d’un SACD fonctionnel chez l’humain. D’autre part, des phénomènes de plasticité à long terme, pathologique ou supranormale, seraient susceptibles de modifier l’activité de cette voie cortico-olivocochléaire. / The auditory system has two special features. At peripheral level, active cochlear micromechanisms (ACM), underlain by motility of outer hair cells (OHC), are involved in auditory sensitivity and frequency selectivity. At central level, the medial olivocochlear efferent system (MOCES), which directly projects onto OHC to modulate ACM, improves auditory perception in noise. From an exploratory point of view, both processes can be assessed through transient evoked otoacoustic emissions (TEOAE) and the procedure of contralateral suppression. In addition, experimental data in animals have disclosed a top-down control exerted by corticofugal descending auditory system (CDAS) on cochlea, via MOCES.The present work comprises three studies carried out in human, aiming to investigate interactions between CDAS, MOCES and ACM. The first and second studies, based on an innovative experimental procedure in epileptic patients undergoing presurgical stereoelectroencephalography, have revealed a differential attenuation effect of intracerebral electrical stimulation on TEOAE amplitude depending on stimulation modalities, as well as a variability of this effect depending on the clinical history of epilepsy. The third study has shown a bilateral enhancement of MOCES activity in professional musicians.Taking together, these results provide direct and indirect evidence for the existence of a functional CDAS in humans. Moreover, possible long-term plasticity phenomenon, either pathological –as in epileptic patients– or supernormal –as in professional musicians– may change cortico-olivocochlear activity.

Page generated in 0.1245 seconds