Em Biomedicina, a detecção e a quanticação de anormalidades presentes num sinal são desejáveis. Uma estratégia de codicação baseada em extração de características, tais como picos ou frequências, pode não capturar todas as irregularidades. Assim, uma representação baseada em funções de base denidas com conhecimento a priori do sinal pode ser mais precisa para aplicações biomédicas. A escolha das funções base depende da natureza siológica do sinal e de suas peculiaridades. Sinais de eletrocardiograma (ECG) e eletroencefalograma (EEG) exibem características bem denidas. ECG, por exemplo, é um sinal elétrico composto de uma forma de onda especíca (P, QRS e T). Se as características de um sinal a ser sintetizado são bem compreendidas, é possível derivar uma assinatura para o sinal. Uma codicação apropriada permite a extração de parâmetros relevantes para sua análise, tais como anormalidades num ciclo cardíaco representadas por uma alteração no sinal de ECG, ou então uma excitação das ondas cerebrais representada por uma modicação no sinal de EEG. O objetivo deste projeto é introduzir uma nova técnica de codicação de sinais, que representa um sinal pela soma de funções sigmoides para aproximar iterativamente o sinal medido, com foco em aplicações biomédicas. Funções sigmoides tendem a reproduzir bem as grandes variações presentes em sinais biomédicos, daí a escolha de usá-las na codicação deste tipo de sinal. Serão explorados o nível de compressão dos dados, bem como a taxa de convergência. A técnica desenvolvida será comparada com técnicas convencionais de codicação e sua robustez será avaliada. Uma estratégia de codicação ótima pode trazer benefícios não só para a compressão, mas também na criação de assinaturas de sinais representando tanto condições siológicas normais como patológicas. / In Biomedicine, detection and quantication of abnormalities present in a signal are desired. An encoding strategy based on feature extraction, such as peaks or frequencies, may not capture all irregularities. Thus, a function-based representation, constructed using a priori knowledge of signal characteristics, may be more accurate for biomedical applications. The choice of the basis function depends on the physiological nature of the signal and its specic features. Electrocardiogram (ECG) and electroencephalogram (EEG) signals exhibit well-dened characteristics. ECG, for instance, is an electrical signal composed of specic waveform (P, QRS, and T). If the characteristics of a signal to be synthesized are well understood, its possible to derive a signal signature. An appropriate encoding allows the extraction of parameters relevant for its analysis, such as, abnormalities in a cardiac cycle represented by an alteration in the ECG signal, or an excitation of the brain waves represented by a modication of the EEG. The objective of this project is to introduce a novel signal encoding technique that represents a signal by a sum of sigmoidal functions to iteratively approximate the measured signal, targeted at biomedical applications. Sigmoidal functions tend to reproduce well large variations in biomedical signals, hence their use for coding this type of signal. We explore the data compression level as well as the convergence rate. We also compare it to conventional encoding techniques and assess the robustness of this model. An optimal encoding strategy may bring not only benets in compression, but also in the creation of signatures for signals representing both physiological and pathological conditions.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20082013-155137 |
Date | 08 March 2013 |
Creators | Corte Real, Luiz Fernando Oliveira |
Contributors | Jackowski, Marcel Parolin |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds