Return to search

Promoting Endothelial Cell Growth within Microchannels - Modification of Polydimethylsiloxane and Microfabrication of Circular Microchannels

Polydimethylsiloxane (PDMS) microfluidic channels, fabricated using low cost and simple soft lithography methods, conventionally have rectangular cross-sections. Despite being often used for organs-on-a-chip and cardiovascular research, these devices do not mimic the circular cross-sections of blood vessels in the human body, creating potential inaccuracies in observed flow conditions and cell behaviours. The purpose of this thesis is to (i) compare and optimize fabrication techniques for microchannels with circular cross-sections, (ii) assess biocompatibility of different surface functionalization approaches for Human Umbilical Vein Endothelial Cell (HUVEC) adhesion and growth, (iii) culture HUVECs within circular microchannels to mimic blood vessel features, and (iv) compare gene expression of HUVECs cultured in 3D circular microchannels to those cultured on 2D surfaces. We show that wire molding is superior to the gas stream technique for producing circular cross-section microchannels with high aspect ratios, circularity, and channel geometry precision. Fibronectin (FN) and polydopamine (PD) surface coatings on PDMS, as well as alternative collagen substrates, were tested for biocompatibility with HUVECs in 2D cultures; fibronectin coated PDMS (PDMS-FN) substrates facilitated cell attachment, spreading and growth. We demonstrate the capability of growing HUVECs on the inner surface of circular PDMS microchannels created using the wire-mold method and treated with fibronectin. A syringe pump was used to induce shear stress on the HUVECs grown in circular microchannels. Relative to static growth conditions, longer cell culture growth periods were more feasible under flow and altered cell morphology was observed. Finally, Microarray analysis revealed significantly different gene expression profiles for HUVECs cultured within PDMS-FN circular cross-section microchannels as compared to HUVECs cultured on PDMS-FN in a 2D environment, thereby highlighting the critical importance of in vitro conditions for mimicking the in vivo reality.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37555
Date25 April 2018
CreatorsGerson, Eleanor
ContributorsFenech, Marianne, Variola, Fabio
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0056 seconds