Return to search

Simulation of strain-induced and defect-controlled self-organization of nanostructures / Simulation von verspannungsinduzierter und defektkontrollierter Selbstorganisation von Nanostrukturen

In this PhD thesis, the effect of strain on heteroepitaxial growth is investigated by means of Kinetic Monte Carlo simulations. In this context the lattice misfit, arising from the different lattice constants of the adsorbate and the substrate material, is of particular interest. As a consequence, this lattice misfit leads to long-range elastic strain effects having strong influence on the entire growing crystal and its resulting surface morphology. The main focus of this work is the investigation of different strain relaxation mechanisms and their controlling parameters, revealing interesting consequences on the subsequent growth. Since epitaxial growth is carried out under conditions far away from thermodynamic equilibrium, it is strongly determined by surface kinetics. At this point the relevant kinetic microscopic processes are described, followed by theoretical considerations of heteroepitaxial growth disclosing an overview over several independent methodological streams, used to model epitaxy in different time and length scales, as well as the characterization of misfit dislocations and the classification of epitaxial growth modes based on thermodynamic considerations. The epitaxial growth is performed by means of Kinetic Monte Carlo simulations which allows for the consideration of long range effects in systems with lateral extension of few hundred atoms. By using an off-lattice simulation model the particles are able to leave their predefined lattice sites, which is an indispensable condition for simulating strain relaxation mechanisms. The main idea of our used model is calculating the activation energy of all relevant thermally activated processes by using simple pair potentials and then realizing the dynamics by performing each event according to its probability by means of a rejection-free algorithm method. In addition, the crystal relaxation procedure, the grid-based particle access method, which accelerates the simulation enormously, and the efficient implementation of the algorithm are discussed. To study the influence of long range elastic strain effects, the main part of this work was realized on the two dimensional triangular lattice, which can be treated as a cross section of the real three dimensional case. Chapter 4 deals with the formation of misfit dislocations as a strain relaxation mechanism and the resulting consequences on the subsequent heteroepitaxial growth. We can distinguish between two principally different dislocation formation mechanisms, depending strongly on the sign as well as on the magnitude of the misfit, but also the surface kinetics need to be taken into account. Additionally, the dislocations affect the lattice spacings of the crystal whose observed progression is in qualitative good agreement with experimental results. Furthermore, the dislocations influence the subsequent growth of the adsorbate film, since the potential energy of an adatom is modulated by buried dislocations. A clear correlation between the lateral positions of buried dislocations and the positions of mounds grown on the surface can be observed. In chapter 5, an alternative strain relaxation mechanism is studied: the formation of three dimensional islands enables the particles to approach their preferred lattice spacing. We demonstrate that it is possible to adjust within our simulation model each of the three epitaxial growth modes: Volmer–Weber, Frank–van der Merve or layer-by-layer, and Stranski–Krastanov growth mode. Moreover, we can show that the emerging growth mode depends in principle on two parameters: on the one hand the interaction strength of adsorbate particles with each other, compared to the interaction of adsorbate with substrate particles, and on the other hand the lattice misfit between adsorbate and substrate particles. A sensible choice of these two parameters allows the realization of each growth mode within the simulations. In conclusion, the formation of nanostructures controlled by an underlying dislocation network can be applied in the concept of self-organized pattern formation as well as by the tendency to form ordered arrays of strain-induced three dimensional grown islands. In chapter 6, we extend our model to three dimensions and investigate the effect of strain on growth on bcc(100) surfaces. We introduce an anisotropic potential yielding a stable bcc lattice structure within the off-lattice representation. We can show that the strain built up in submonolayer islands is mainly released at the island edges and the lattice misfit has strong influence on the diffusion process on the plane surface as well as on the situation at island edges with eminent consequences on the appearance of submonolayer islands. / Im Rahmen dieser Doktorarbeit wird der Einfluss elastischer Verspannungen auf heteroepitaktisches Kristallwachstum mit Hilfe kinetischer Monte Carlo Simulationen untersucht. Von besonderem Interesse ist hierbei die Gitterfehlanpassung, die aus den unterschiedlichen Gitterkonstanten des Adsorbat- und des Substratmaterials herrührt. Dieser Gitterunterschied zeigt weitreichende elastische Verspannungseffekte mit starkem Einfluss auf den gesamten Kristall und dessen Morphologie. Hauptgegenstand der vorliegenden Arbeit ist die Untersuchung der wesentlichen Mechanismen, mittels deren die Kristallverspannungen abgebaut werden. Dabei gilt es ferner die maßgeblichen Parameter zu bestimmen, die es erlauben, die Relaxationsmechanismen zu kontrollieren. Da epitaktisches Wachstum fernab vom thermodynamischen Gleichgewicht stattfindet und somit stark von kinetischen Oberflächenprozessen beeinflusst wird, werden zunächst die relevanten mikroskopischen Prozesse beschrieben. Im Anschluss daran folgt ein Überblick über verschiedene Methoden, die zur Modellierung epitaktischem Wachstums auf unterschiedlichen Zeit- und Längenskalen dienen, gefolgt von Charakterisierungsmöglichkeiten von Versetzungen und der Klassifizierung der verschiedenen Wachstumsmoden. Hierbei wird epitaktisches Wachstum mittels kinetischen Monte Carlo Simulationen verwirklicht, die es erlauben weitreichende Verspannungseffekte an Systemen mit einer Ausdehnung von einigen hundert Atomen zu untersuchen. Die Verwendung eines gitterfreien Simulationsmodells ermöglicht ferner den Teilchen, ihre vordefinierten Gitterplätze zu verlassen. Die Grundidee unseres Modells besteht darin, die Aktivierungsenergien aller relevanten thermisch aktivierten Prozesse mit Hilfe einfacher Paarwechselwirkungspotenziale zu berechnen. Die Dynamik wird dadurch verwirklicht, dass jedes Ereignis entsprechend seiner Wahrscheinlichkeit unter Verwendung eines verwerfungsfreien Algorithmus ausgeführt wird. Ferner werden das Kristallrelaxationsverfahren, die rasterbasierte Teilchenzugriffsmethode, welche die Simulationen erheblich beschleunigt, sowie die effiziente Implementierung des Algorithmus diskutiert. In den weiteren Kapiteln findet unser Modell Anwendung in der Simulation der verschiedenen Mechanismen des Verspannungsabbaus beim heteroepitaktischen Wachstum. Um den Einfluss weitreichender elastischer Verspannungseffekte zu untersuchen, wurde der Großteil dieser Arbeit auf dem zweidimensionalen Dreiecksgitter bewerkstelligt, das als Querschnitt des realen dreidimensionalen Falls betrachtet werden kann. Kapitel 4 behandelt den Verspannungsabbau durch die Bildung von Versetzungen. Hierbei unterscheidet man zwei prinzipiell unterschiedliche Mechanismen der Versetzungsbildung, die unter zusätzlicher Berücksichtigung der Oberflächenkinetik maßgeblich vom Vorzeichen und Betrag der Gitterfehlanpassung abhängen. Zusätzlich beeinträchtigen die Versetzungen die Gitterabstände innerhalb des Kristalls, deren Verlauf qualitativ gut mit experimentellen Beobachtungen übereinstimmt. Darüber hinaus beeinflussen Versetzungen den weiteren Wachstumsverlauf des Adsorbatfilms. Dabei besteht ein deutlicher Zusammenhang zwischen den lateralen Positionen der vergrabenen Versetzungen und denen der auf der Oberfläche gewachsenen Hügel. Die Bildung dreidimensionaler Inseln ermöglicht den Teilchen sich ihrem bevorzugten Gitterabstand anzunähern. Im Rahmen unseres Modells ist es möglich, jede der drei epitaktischen Wachstumsarten einzustellen: Volmer–Weber, Frank–van der Merve oder Lage für Lage sowie die Stranski–Krastanov Wachstumsart. Ferner sind wir in der Lage zu zeigen, dass die sich einstellende Wachstumsart im Wesentlichen von zwei Parametern gesteuert werden kann: die erste wichtige Größe ist die Wechselwirkungsstärke zwischen Adsorbatteilchen untereinander verglichen mit jener zwischen Adsorbat- und Substratteilchen, den zweiten wichtigen Parameter stellt die Gitterfehlanpassung zwischen Adsorbat und Substrat dar. Eine vernünftige Wahl dieser beiden Parameter erlaubt es, jede dieser drei Wachstumsarten zu simulieren. Schlussfolgernd kann gesagt werden, dass einerseits durch ein zu Grunde liegendes Versetzungsnetzwerk die Bildung von Nanostrukturen gesteuert werden kann, andererseits auch die durch Kristallverspannungen induzierte, regelmäßige Anordnung dreidimensional gewachsener Inseln in dem Konzept selbstorganisierter Strukturbildung Verwendung finden kann. In Kapitel 6 erweitern wir schließlich unser Modell auf drei Dimensionen, was es uns ermöglicht, den Einfluss von Verspannung auf das Wachstum auf bcc(100) Oberflächen zu untersuchen. Dabei zeigt sich, dass die Verspannung innerhalb der Monolageninseln hauptsächlich an den Inselrändern abgebaut wird und die Gitterfehlanpassung starken Einfluss auf die Diffusion in der Ebene genauso wie auf die Situation an den Inselrändern hat und somit bedeutende Auswirkungen auf das Erscheinungsbild von Submonolageninseln zeigt.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2389
Date January 2008
CreatorsWalther, Markus
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0072 seconds