On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme les domaines extérieurs, en dimension trois et l'espace tout entier. Le but est d'étudier l'existence de solutions généralisés et de solutions fortes dans un cadre général non nécessairement hilbertien. On s'intéresse aussi au cas des solutions très faibles. Dans ce travail, on considère aussi bien des conditions aux limites classiques de type Dirichlet que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses, du tourbillon, voir du champ de pression. Les espaces de Sobolev classiques ne sont pas adaptés à l'étude de ces problèmes pour une telle géométrie. Pour une bonne analyse mathématique, nous avons choisi de travailler dans le cadre des espaces de Sobolev avec poids, ce qui permet en particulier de mieux contrôler le comportement à l'infini de la solution. / In this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces.
Identifer | oai:union.ndltd.org:theses.fr/2013PAUU3002 |
Date | 01 March 2013 |
Creators | Meslameni, Mohamed |
Contributors | Pau, Amrouche, Cherif |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds