Return to search

Surmize: An Online NLP System for Close-Domain Question-Answering and Summarization

The amount of data available and consumed by people globally is growing. To reduce mental fatigue and increase the general ability to gain insight into complex texts or documents, we have developed an application to aid in this task. The application allows users to upload documents and ask domain-specific questions about them using our web application. A summarized version of each document is presented to the user, which could further facilitate their understanding of the document and guide them towards what types of questions could be relevant to ask. Our application allows users flexibility with the types of documents that can be processed, it is publicly available, stores no user data, and uses state-of-the-art models for its summaries and answers. The result is an application that yields near human-level intuition for answering questions in certain isolated cases, such as Wikipedia and news articles, as well as some scientific texts. The application shows a decrease in reliability and its prediction as to the complexity of the subject, the number of words in the document, and grammatical inconsistency in the questions increases. These are all aspects that can be improved further if used in production. / Mängden data som är tillgänglig och konsumeras av människor växer globalt. För att minska den mentala trötthet och öka den allmänna förmågan att få insikt i komplexa, massiva texter eller dokument, har vi utvecklat en applikation för att bistå i de uppgifterna. Applikationen tillåter användare att ladda upp dokument och fråga kontextspecifika frågor via vår webbapplikation. En sammanfattad version av varje dokument presenteras till användaren, vilket kan ytterligare förenkla förståelsen av ett dokument och vägleda dem mot vad som kan vara relevanta frågor att ställa. Vår applikation ger användare möjligheten att behandla olika typer av dokument, är tillgänglig för alla, sparar ingen personlig data, och använder de senaste modellerna inom språkbehandling för dess sammanfattningar och svar. Resultatet är en applikation som når en nära mänsklig intuition för vissa domäner och frågor, som exempelvis Wikipedia- och nyhetsartiklar, samt viss vetensaplig text. Noterade undantag för tillämpningen härrör från ämnets komplexitet, grammatiska korrekthet för frågorna och dokumentets längd. Dessa är områden som kan förbättras ytterligare om den används i produktionen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-412247
Date January 2020
CreatorsBergkvist, Alexander, Hedberg, Nils, Rollino, Sebastian, Sagen, Markus
PublisherUppsala universitet, Institutionen för informationsteknologi, Uppsala universitet, Institutionen för informationsteknologi, Uppsala universitet, Institutionen för informationsteknologi, Uppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationSjälvständigt arbete i informationsteknologi ; 2020-001

Page generated in 0.0029 seconds