Pricing American options has always been problematic due to its early exercise characteristic. As no closed-form analytical solution for any of the widely used models exists, many numerical approximation methods have been proposed and studied. In this thesis, we investigate the Least-Square Monte Carlo Simulation (LSMC) method of Longstaff & Schwartz for pricing American options under the two-dimensional Heston model. By conducting extensive numerical experimentation, we put the LSMC to test and investigate four different continuation functions for the LSMC. In addition, we consider investigating seven different combination of Heston model parameters. We analyse the results and select the optimal continuation function according to our criteria. Then we uncover and study the early exercise boundary foran American put option upon changing initial volatility and other parameters of the Heston model.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-48928 |
Date | January 2020 |
Creators | Mohammad, Omar, Khaliqi, Rafi |
Publisher | Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds