Return to search

Earthen Materials In Organic Forms: An Ecological Solution to the Urban Biosphere?

The pandemic has taught us several valuable lessons. It led to a new interest in redesigning-built environments that promote healthy indoor atmospheres and provide a space for reflection along with social distancing. The architecture of a space affects how people move within a space and live their lives. By using organic design principles and sustainable systems, we can transform and renew our built environment. A holistic approach that combines natural and built elements can create a sense of harmony and health, which is in line with the essence of organic architecture.
Organic architecture can provide a sustainable solution to the persistent conflict between humans and nature due to urbanization, resource scarcity, and deforestation. By incorporating organic design principles, we can reconcile expanding urban environments and mass constructions with the natural world and biosphere. This approach can establish a harmonious relationship between human-made environments and nature, creating a more sustainable future. Despite their benefits, earthen materials are not widely used in new construction in North America. (Jenkins Swan, Rteil, and Lovegrove 2011) Some people even might believe that earthen materials are indicators of poverty, creating a social stigma that limits their use. Labor standards and knowledge sharing in the building industries may preference other ways of building. For others, the technical data available may be insufficient to quantify an understanding of building performance in various climates. Importantly, earthen materials are not fully represented in building codes and standards, particularly in North America.(Jenkins Swan, Rteil, and Lovegrove 2011)
According to recent research, earthen building materials are capable of regulating indoor temperatures and humidity to attain optimal levels for occupant health (Alassaad et al. 2021). Low toxicity along with recyclability at the end of its life cycle which in turn allows for a cradle-to-cradle supply chain are also some of the other advantages of earthen materials. By being sustainable from the start of its life cycle, this thesis explores the use of earthen materials in construction by not just promoting the environmental benefits but also demonstrating how it could possibly add life to new organic forms.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2378
Date26 May 2023
CreatorsPatil, Rutuja
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0103 seconds