Soient $X$ et $Y$ deux variables aléatoires de fonctions de répartition $F$ et $G$ respectivement. Deux réalisations données $x$ et $y$ sont dites équivalentes si et seulement si $F(x)=G(y)$. Cette équation est connue sous le nom ``équation équipercentile''. Sa résolution, pour un $x$ fixé, permet d'exprimer l'équivalent équipercentile de $x$ comme suit: $y(x)=G^{-1}(F(x))$, où $G^{-1}$ désigne la fonction inverse de $G$. Dans ce travail, nous proposons cinq scénarios d'estimation de la fonction d'égalisation équipercentile $G^{-1}(F(x))$. Les estimateurs proposés reposent sur l'approche de l'ajustement polynômial local. Les résultats obtenus sont les suivants. D'abord, nous montrons la convergence uniforme presque sûre des estimateurs. Ensuite, nous établissons l'approximation par un pont brownien approprié et évaluons la performance des estimateurs en utilisant l'erreur en moyenne quadratique comme mesure de perte. Finalement, nous proposons quelques simulations sous R pour illustrer nos résultats et comparons les estimateurs en les appliquant sur un jeu de données réelles provenant d'une étude longitudinale multi-centrique de la cohorte ANRS C08.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00425330 |
Date | 03 June 2009 |
Creators | El Fassi, Kaouthar |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds