The chemical element carbon plays a key role in the 21st century. “The new carbon age” is associated with the global warming due to increasing carbon dioxide emissions. The latter are a major consequence of the continued combustion of fossil fuels for energy generation. However, carbon is also one key component to overcome these problems. Especially porous carbon materials are highly attractive for many environmentally relevant applications. These materials provide high specific surface area, high pore volume, thermal/chemical stability, and high electrical conductivity. They are promising candidates for the removal of carbon dioxide or other environmentally relevant gases from exhaust gas mixtures. Furthermore, porous carbons are used in electrochemical energy storage devices (e.g. batteries or electrochemical capacitors).
The performance of the materials in these applications depends on their pore structure. Hence, precise control over the pore size and the pore geometry is important to achieve. Besides a high specific surface area (SSA) and a well-defined pore size, pore accessibility must be ensured because the surface must be completely available. If the porous carbons exhibit ink-bottle pores, the high surface area is useless because the guest species do not reach the pore interior. Therefore, carbon materials with hierarchical pore structure are attractive. They combine at least two different pore systems of different size which contribute with their individual advantages. While smaller pores provide large specific surface area, larger pores ensure efficient mass transport. Numerous methods for the targeted synthesis of carbide-derived carbon materials (CDCs) with hierarchical pore architectures were developed within this thesis (Figure 1). CDCs are produced by the extraction of metal- or semi-metal atoms from carbide precursors leading to the formation of a microporous carbon network with high specific surface area.
PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 8.5 cm3/g were prepared by a high internal phase emulsion technique. CO2 activation increases the SSA to values above 3100 m2/g. These materials are promising for the filtration of non-polar organic compounds from gas mixtures. CDC nanospheres with diameters below 200 nm were obtained from polycarbosilane-based miniemulsions. They show high capacitance of up to 175 F/g in symmetrical EDLCs in 1 M H2SO4 aqueous electrolyte.
Besides such emulsion techniques, the hard-templating concept (also referred to as nanocasting) was presented as an efficient approach for the synthesis of CDC mesofoam powders and meso-macroporous CDC monoliths starting from silica templates and polycarbosilane precursors. As a wide range of pore sizes is approachable, the resulting materials are highly versatile in terms of application. Due to their high nanopore volume, well-defined mesopores and large SSA, they show outstanding properties as electrode materials in EDLCs or in Li-S batteries as well as high and rapid uptake in gas adsorption processes.
CDC aerogels were produced by pyrolysis and high-temperature chlorine treatment of cross-linked polycarbosilane aerogels. These materials can be tailored for efficient CO2 adsorption and show outstanding performance in EDLC electrodes at high current densities of up to 100 A/g due to the very short electron diffusion pathways within the aerogel-type pore system.
It was further shown that CDCs can be combined with mesopores by the sacrificial template method starting from PMMA particles as the pore-forming material. The use of highly toxic hydrofluoric acid for template removal and large amounts of organic solvents as typical for hard- and soft-templating approaches can be overcome. SSAs and total pore volumes of 2434 m2/g and 2.64 cm3/g are achieved ensuring good performance of PMMA-CDCs in Li-S batteries cathodes.
Besides the characterization of CDCs in real energy storage devices and adsorption processes, their use as model substances in energy- and environmentally relevant applications was part of this thesis. The questions “How does it work?” and “What do we need?” must be clearly answered before any material can be tailored under the consideration of economic and ecological perspectives. The high potential of CDCs for this purpose was shown in this thesis. These carbons were used as model substances in combination with nuclear magnetic resonance (NMR) techniques to get a detailed understanding of the adsorption processes on porous carbon surfaces. However, such investigations require the use of model substances with a tailored and well-defined pore structure to clearly differentiate physical states of adsorbed species and to understand fundamental mechanisms. The characterization of the interaction of electrolyte molecules with the carbon surface was performed with solid-state NMR experiments. The materials were also studied in the high-pressure adsorption of 129Xe using an in-situ NMR technique. Both NMR studies enable the analysis of ions or gas atoms adsorbed on the carbon surface on an atomic level and experimentally demonstrate different strength of interaction with pores of variable size and connectivity.
In addition, the novel InfraSORP technology was used for the investigation of the thermal response of CDCs and templated carbon and carbide materials during n-butane adsorption. These model systems lead to a more profound understanding of this technique for the rapid characterization of porous materials.
The Kroll-Carbon (KC) concept is a highly attractive alternative for the synthesis of well-defined carbons on the large scale. In this technique, the porous materials are produced by the reductive carbochlorination reaction between oxidic nanoparticles and a surrounding carbon matrix. First KC materials were produced with high SSA close to 2000 m2/g and total pore volumes exceeding 3 cm3/g. This method was established with template particles of various dimensions as well as by using various types of oxides (silica, alumina, titania). Hence, porous carbon materials with various textural parameters are approachable. The first generation of KCs is promising for the use in Li-S battery cathodes and as electrode materials in EDLCs.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-164113 |
Date | 14 April 2015 |
Creators | Oschatz, Martin |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Stefan Kaskel, Prof. Dr. Stefan Kaskel, Prof. Dr. Eike Brunner |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds