Return to search

Approche coupl´ee exp´erience/th´eorie des interfaces ´electrode/´electrolyte dans les microbatteries au lithium : application au syst`eme LixPOyNz/Si / On the study of electrode/electrolyte interfaces in lithium-ion microbatteries : a combined approach (experiment/theory) of the LixPOyNz/Si system

Afin de pallier les problèmes de sécurité posés par l'emploi d'électrolytes liquides, des batteries incorporant des électrolytes solides ont été envisagées, conduisant à des dispositifs « tout solide » de type microbatterie au lithium. Dans le cas de ces systèmes, des études concernant les phénomènes aux interfaces restent à développer, afin de comprendre les processus limitants qui se déroulent à l'échelle atomique, similairement à la formation de la SEI (« Solid Electrolyte Interface »), bien connue dans le cas de l'utilisation d'électrolytes liquides. Dans ce type de problématiques, l'apport des méthodes de la chimie calculatoire, de part leur aspect prédictif et explicatif, est incontestable. Le présent travail de thèse, en prenant pour objet d'étude l'électrolyte solide LixPOyNz, se place dans ces problématiques, en proposant l'étude fondamentale de modèles d'interfaces électrode/électrolyte. L'électrolyte considéré étant un matériau amorphe, le premier verrou à lever consiste en la recherche d'un modèle de ce système, apte à simuler les propriétés électroniques de l'électrolyte réel, constituées par des données XPS cibles. Les calculs menés, visant à la modélisation des spectres XPS, ont permis tout à la fois de proposer un modèle de l'électrolyte et de mettre en lumière l'existence d'une coordinence des atomes d'azote non considérée jusqu'alors dans l'interprétation expérimentale des données XPS. La possible existence d'atomes d'azote monovalents au sein de l'électrolyte semble confirmée par des calculs vibrationnels, thermodynamiques et cinétiques complémentaires, tandis que ce résultat permet de réviser la vision communément admise de la structuration de l'électrolyte LixPOyNz et de la diffusion des ions Li+ au sein de celui-ci. Enfin, ce modèle structural de l'électrolyte a été employé à la simulation d'une interface électrode/électrolyte (LixPOyNz/Si). Une considération particulière a notamment été apportée à l'étude de l'adsorption du modèle à la surface et de la diffusion des ions lithium au sein de l'interface. / In order to overcome the safety issues induced by the use of liquid electrolytes, Li-ion batteries involving solid electrolytes have been considered, leading to an ‘all-solid’ kind of devices, commonly called microbatteries. For such devices, studies on the limiting processes that take place at electrode/electrolyte interfaces need to be done, to understand the electrochemical phenomenons likely to occur at the atomic scale, similarly to the well-known SEI formation. In this goal, methods of computational chemistry can provide both explanatory and predictive breakthroughs. The present work takes part in those issues by intending a study of electrode/electrolyte interfaces, considering LixPOyNz as the solid electrolyte material. Owing to the amorphous structuration of this system, the first barrier to break consists in the search for a suitable model, able to reproduce its real XPS electronic properties. Modelling of XPS spectra has both lead to propose a model of the electrolyte and highlight the possible existence of a new coordinence for nitrogen atoms, up to now unconsidered experimentally. Complementary calculations of Raman spectra, thermodynamic and kinetic data tend to evidence this coordinence, leading to a refinement of the commonly considered diffusion scheme. Finally, this structural model has been used to simulate an electrode/electrolyte interface (LixPOyNz/Si), with the particular aim of studying its adsorption on the electrode and the Li-ion diffusion through the interface.

Identiferoai:union.ndltd.org:theses.fr/2014PAUU3045
Date16 October 2014
CreatorsGuille, Emilie
ContributorsPau, Baraille, Isabelle
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds