RCs (Reverberation Chambers) has historically been used mainly for aerospace and military purposes in EMC (Electromagnetic Compatibility) testing, but the interest also seems to increase in the automotive industry (the development of an international standard for vehicles is in progress). The vehicles of the future will most likely be electrified, wirelessly connected and autonomous, i.e., more control units, more communication systems, and more sensors, will be implemented in the vehicles requiring increased robustness against all possible electromagnetic interferences. EMC testing in an RC is a step in the direction of ensuring this robustness for the future vehicle platforms. Compared to a traditional EMC test method in a fully or semi-AC (Anechoic Chamber), testing in an RC has the advantage that the electromagnetic field will be isotropic, randomly polarized and homogeneous in a statistical sense, i.e., the exposed object will be surrounded by electromagnetic energy from all directions. It can be considered relatively expensive to build a brand new RC with motorized stirrers and associated measurement instrumentation, instead it would be desirable to perform immunity tests in a more cost-effective conductive fabric tent. The great advantage is the flexibility, the tent can be set up almost anywhere, even in already existing semi-ACs, such set-up is referred to as VIRC (Vibrating Intrinsic Reverberation Chamber). This thesis aims to develop a new test method in a VIRC environment. In order to achieve good RC conditions, the electromagnetic field must be statistically Rayleigh distributed. Furthermore, it is of great importance to avoid LoS (Line of Sight) between the antenna and the test object, and to achieve good stirring in the tent. Provided this can be achieved, there are still some challenges by testing in a tent. For example, the classical dwell time of two seconds for immunity testing in EMC is not possible to achieve in a VIRC environment. The validation in this thesis shows that the dwell time or the total exposure time in the tent might be enough to trigger possible malfunctions in today's modern high-speed communication vehicles. Furthermore, it is showed, testing in a VIRC gives good field uniformity and repeatability, and can trigger malfunctions that are not triggered in traditional EMC testing in semi-AC, i.e., ALSE (Absorber-Lined Shielded Enclosure) testing.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-176745 |
Date | January 2021 |
Creators | Lundberg, Andreas |
Publisher | Linköpings universitet, Elektroniska Kretsar och System, Research Institutes of Sweden |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds