Return to search

A continuous computational interpretation of type theories

This thesis provides a computational interpretation of type theory validating Brouwer’s uniform-continuity principle that all functions from the Cantor space to natural numbers are uniformly continuous, so that type-theoretic proofs with the principle as an assumption have computational content. For this, we develop a variation of Johnstone’s topological topos, which consists of sheaves on a certain uniform-continuity site that is suitable for predicative, constructive reasoning. Our concrete sheaves can be described as sets equipped with a suitable continuity structure, which we call C-spaces, and their natural transformations can be regarded as continuous maps. The Kleene-Kreisel continuous functional can be calculated within the category of C-spaces. Our C-spaces form a locally cartesian closed category with a natural numbers object, and hence give models of Gödel’s system T and of dependent type theory. Moreover, the category has a fan functional that continuously compute moduli of uniform continuity, which validates the uniform-continuity principle formulated as a skolemized formula in system T and as a type via the Curry-Howard interpretation in dependent type theory. We emphasize that the construction of C-spaces and the verification of the uniform-continuity principles have been formalized in intensional Martin-Löf type theory in Agda notation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:649340
Date January 2015
CreatorsXu, Chuangjie
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/5967/

Page generated in 0.0463 seconds