Return to search

Design, Synthesis and Optoelectronic Properties of Monovalent Coinage Metal-Based Functional Materials toward Potential Lighting, Display and Energy-Harvesting Devices

Groundbreaking progress in molecule-based optoelectronic devices for lighting, display and energy-harvesting technologies demands highly efficient and easily processable functional materials with tunable properties governed by their molecular/supramolecular structure variations. To date, functional coordination compounds whose function is governed by non-covalent weak forces (e.g., metallophilic, dπ-acid/dπ-base stacking, halogen/halogen and/or d/π interactions) remain limited. This is unlike the situation for metal-free organic semiconductors, as most metal complexes incorporated in optoelectronic devices have their function determined by the properties of the monomeric molecular unit (e.g., Ir(III)-phenylpyridine complexes in organic light-emitting diodes (OLEDs) and Ru(II)-polypyridyl complexes in dye-sensitized solar cells (DSSCs)). This dissertation represents comprehensive results of both experimental and theoretical studies, descriptions of synthetic methods and possible application allied to monovalent coinage metal-based functional materials. The main emphasis is given to the design and synthesis of functional materials with preset material properties such as light-emitting materials, light-harvesting materials and conducting materials.
In terms of advances in fundamental scientific phenomena, the major highlight of the work in this dissertation is the discovery of closed-shell polar-covalent metal-metal bonds manifested by ligand-unassisted d10-d10 covalent bonds between Cu(I) and Au(I) coinage metals in the ground electronic state (~2.87 Å; ~45 kcal/mol). Moreover, this dissertation also reports pairwise intermolecular aurophilic interactions of 3.066 Å for an Au(I) complex, representing the shortest ever reported pairwise intermolecular aurophilic distances among all coinage metal(I) cyclic trimetallic complexes to date; crystals of this complex also exhibit gigantic luminescence thermochromism of 10,200 cm-1 (violet to red). From applications prospective, the work herein presents monovalent coinage metal-based functional optoelectronic materials such as heterobimetallic complexes with near-unity photoluminescence quantum yield, metallic or semiconducting integrated donor-acceptor stacks and a new class of Au(III)-based black absorbers with cooperative intermolecular iodophilic (I…I) interactions that sensitize the harvesting of all UV, all visible, and a broad spectrum of near-IR regions of the solar spectrum. These novel functional materials of cyclic trimetallic coinage metal complexes have been characterized by a broad suit of spectroscopic and structural analysis methods in the solid state and solution.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1011848
Date08 1900
CreatorsGhimire, Mukunda Mani
ContributorsOmary, Mohammad A., 1969-, D'Souza, Francis, Slaughter, LeGrande M., Richmond, Michael G., Balch, Alan L.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxxiv, 293 pages, Text
RightsPublic, Ghimire, Mukunda Mani, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0019 seconds