Spelling suggestions: "subject:"electrooptics -- matematerials."" "subject:"electrooptics -- datenmaterials.""
1 |
Multimode interference in a Kerr nonlinear materialRodgers, John Scott 12 1900 (has links)
No description available.
|
2 |
Design, Synthesis and Optoelectronic Properties of Monovalent Coinage Metal-Based Functional Materials toward Potential Lighting, Display and Energy-Harvesting DevicesGhimire, Mukunda Mani 08 1900 (has links)
Groundbreaking progress in molecule-based optoelectronic devices for lighting, display and energy-harvesting technologies demands highly efficient and easily processable functional materials with tunable properties governed by their molecular/supramolecular structure variations. To date, functional coordination compounds whose function is governed by non-covalent weak forces (e.g., metallophilic, dπ-acid/dπ-base stacking, halogen/halogen and/or d/π interactions) remain limited. This is unlike the situation for metal-free organic semiconductors, as most metal complexes incorporated in optoelectronic devices have their function determined by the properties of the monomeric molecular unit (e.g., Ir(III)-phenylpyridine complexes in organic light-emitting diodes (OLEDs) and Ru(II)-polypyridyl complexes in dye-sensitized solar cells (DSSCs)). This dissertation represents comprehensive results of both experimental and theoretical studies, descriptions of synthetic methods and possible application allied to monovalent coinage metal-based functional materials. The main emphasis is given to the design and synthesis of functional materials with preset material properties such as light-emitting materials, light-harvesting materials and conducting materials.
In terms of advances in fundamental scientific phenomena, the major highlight of the work in this dissertation is the discovery of closed-shell polar-covalent metal-metal bonds manifested by ligand-unassisted d10-d10 covalent bonds between Cu(I) and Au(I) coinage metals in the ground electronic state (~2.87 Å; ~45 kcal/mol). Moreover, this dissertation also reports pairwise intermolecular aurophilic interactions of 3.066 Å for an Au(I) complex, representing the shortest ever reported pairwise intermolecular aurophilic distances among all coinage metal(I) cyclic trimetallic complexes to date; crystals of this complex also exhibit gigantic luminescence thermochromism of 10,200 cm-1 (violet to red). From applications prospective, the work herein presents monovalent coinage metal-based functional optoelectronic materials such as heterobimetallic complexes with near-unity photoluminescence quantum yield, metallic or semiconducting integrated donor-acceptor stacks and a new class of Au(III)-based black absorbers with cooperative intermolecular iodophilic (I…I) interactions that sensitize the harvesting of all UV, all visible, and a broad spectrum of near-IR regions of the solar spectrum. These novel functional materials of cyclic trimetallic coinage metal complexes have been characterized by a broad suit of spectroscopic and structural analysis methods in the solid state and solution.
|
3 |
Silver(I) and Copper(I) Complexes from Homoleptic to Heteroleptic: Synthesis, Structure and CharacterizationAlmotawa, Ruaa Mohammed 12 1900 (has links)
A plethora of novel scientific phenomena and practical applications, such as solid-state molecular solar cells and other optoelectronic devices for energy harvesting and lighting technologies, have catalyzed us to synthesize novel compounds with tunable properties. Synthetic routes, single crystal structures, and spectral and materials properties are described. Reactions of Ag(I) and Cu(I) precursors with various types of ligands -- including the azolates, diimines, and diiphosphines -- lead to the corresponding complexes in high yield. Varying the metal ions, ligands, synthetic methods, solvents, and/or stoichiometric ratio can change the properties including the molecular geometry or packing structure, reactivity, photophysical and photochemical properties, semiconducting behavior, and/or porosity of the functional coordination polymers obtained. For solar cells purposes, the absorption energy can be extended from the ultraviolet (UV) region, through the entire visible (Vis) region, onto a significant portion of the near-infrared (NIR) portion of the solar spectrum with high absorption coefficients due to the infinite conjugation of Cu(I) with diimine ligands. Twenty-eight crystal structures were obtained by conventional crystal growth methods from organic solvents, whereas their bulk product syntheses also included "green chemistry" approaches that precluded the use of hazardous organic solvents. The resulting products are characterized by powder x-ray diffraction (PXRD), Fouriertransform infrared (FTIR), nuclear magnetic resonance (NMR), UV/Vis/NIR absorption/diffuse reflectance/photoluminescence spectroscopies, and thermogravimetric analysis (TGA). Regarding the scientific phenomena investigated, the highlighting work in this dissertation is the discovery of novel bonding/photophysical/optoelectronic properties of the following materials: a black absorber with absorption from 200- 900 nm, a very stable compound with a bright green luminescence obtained by a solventless reaction, and a novel coordination polymer showing uncommon interaction of Ag(I) with three different types of diimine ligands simultaneously.
|
4 |
Investigations Into The Structural, Dielectric And Optical Properties Of Glasses Containing Electro-Optic Components And Single Crystals Of Molecular Electro-Optic MaterialsShankar, M V 10 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0846 seconds