Return to search

Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\) / Die elektronische Struktur an der Grenz- und Oberfläche des Ferroelektrikums BaTiO\(_3\)

Transition metal oxides (TMO) represent a highly interesting material class as
they exhibit a variety of different emergent phenomena including multiferroicity and
superconductivity. These effects result from a significant interplay of charge, spin
and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies
(OV) at the surface of certain d0 TMO release free charge carriers and prompt the
formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a
prototypical and promising d0 TMO. It displays ferroelectricity at room temperature
and features several structural phase transitions, from cubic over tetragonal (at
room temperature) and orthorhombic to rhombohedral. The spontaneous electric
polarization in BaTiO3 can be used to manipulate the physical properties of adjacent
materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied
in great detail, the microscopic electronic structure at the surface and interface of
BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation
within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and
the structural phase transitions in BaTiO3.
This thesis investigates the electronic structure of different BaTiO3 systems by
means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of
BaTiO3 single crystals is systematically characterized and compared to theoretical
band structure calculations. A finite p-d hybridization of titanium and oxygen states
was inferred at the high binding energy side of the valence band. In BaTiO3 thin films,
the occurrence of spectral weight near the Fermi level could be linked to a certain
amount of OV at the surface which effectively dopes the host system. By a systematic
study of the metallic surface states as a function of temperature and partial oxygen
pressure, a model was established which reflects the depletion and accumulation of
charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile
behavior of these surface states.
The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface
of BaTiO3-based heterostructures. Therefore, the interface electronic structure
of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by
also including a thickness dependent characterization. The ARPES results, indeed,
confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify
the energy position and the Fermi vector of the spin-split states. This observation
is associated with the appearance of an interface state which was observed for very
low film thickness. Both spectral findings suggest a significant coupling between the
Bi films and BaTiO3. / Übergangsmetalloxide stellen eine hochinteressante Materialklasse dar, da sie
eine Vielzahl neuartiger Phänomene, wie z.B. multiferroische Eigenschaften und Supraleitung, aufweisen. Diese Effekte sind die Folge eines komplexen Zusammen- spiels zwischen den Freiheitsgraden von Ladung, Spin und der orbitalen Komponente innerhalb eines korrelierten d-Elektronensystems. Sauerstoffstörstellen an der Ober- fläche von einigen dieser Systeme führen zu der Ausbildung freier Ladungsträger und der damit verbundenen Erzeugung eines 2-dimensionalen Elektronengases (2DEG). Das in dieser Arbeit untersuchte Bariumtitanat (BaTiO3) ist ein typisches und sehr vielversprechendes d0-Übergangsmetalloxid. Zum einen ist es ferroelektrisch bei Raumtemperatur und zum anderen weist es mehrere strukturelle Phasenübergänge auf, von kubisch über tetragonal (bei Raumtemperatur) und orthorhombisch zu rhom- boedrisch. Die spontane elektrische Polarisation in BaTiO3 kann dazu verwendet werden um physikalische Eigenschaften angrenzender Materialsysteme, z.B. von Dünnfilmen, zu beeinflussen. Obwohl vor allem die makroskopischen ferroelektrischen Eigenschaften von BaTiO3 bereits detailliert untersucht wurden, ist die mikrosko- pische elektronische Struktur in BaTiO3 und in BaTiO3-Grenzflächen noch nicht voll- ständig verstanden. Der Grund hierfür ist ein komplexes Wechselspiel zwischen elek- tronischen Korrelationseffekten, Sauerstoffstörstellen, Ferroelektrizität und struk- turellen Aspekten.
Diese Dissertation befasst sich mit der elektronischen Struktur von verschiede- nen BaTiO3-Systemen, unter Verwendung der winkelaufgelösten Photoelektronen- spektroskopie (PES). Zum einen wurde das Valenzband von BaTiO3-Einkristallen systematisch untersucht und mit theoretischen Rechnungen verglichen. Dabei konnte eine endliche p-d-Hybridisierung von Titan- mit Sauerstoff-Zuständen im Valenzband festgestellt werden. Weiterhin wurde in BaTiO3-Dünnfilmen das Auftreten von spek- tralem Gewicht nahe des Ferminiveaus beobachtet. Diese metallischen Zustände sind auf eine erhöhte Dichte von Sauerstoffstörstellen an der Oberfläche zurückzuführen, wodurch das System effektiv dotiert wird. Die systematische Untersuchung der elek- tronischen Struktur in Abhängigkeit von Temperatur und Sauerstoff-Partialdruck wurde erfolgreich durch ein Modell beschrieben, das eine Instabilität der metallischen Zustände bei T ≈ 285K aufzeigt.
Die ferroelektrische Eigenschaft von BaTiO3 kann in Heterostrukturen dazu
verwendet werden, um die elektronische Struktur an der Grenzfläche zu kontrol- lieren. Zu diesem Zweck wurde in dieser Arbeit die mikroskopische elektronische Struktur an der Grenzfläche von Bi/BaTiO3 bedeckungsabhängig charakterisiert und im Hinblick auf die spin-polarisierten Zustände in Bi untersucht. So konnten Rashba-spinaufgespaltene elektronische Zustände in der Volumenbandlücke des fer- roelektrischen Substrates nachgewiesen werden. Eine Variation der Filmdicke in Bi/BaTiO3 führte zu einer energetischen Verschiebung und zu einer Änderung des Fermivektors der spinaufgespaltenen Zustände. Diese Beobachtung hängt stark mit dem Ausbilden eines Grenzflächenzustandes zusammen, der für sehr niedrige Be- deckungen beobachtet wurde. Beide Effekte weisen zudem auf eine Wechselwirkung zwischen den Bi-Filmen und BaTiO3

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:15905
Date January 2018
CreatorsLutz, Peter
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds