Return to search

Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations / Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers

Les travaux réalisés dans cette thèse concernent l’étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. Par singularité, nous signifions que le problème fait intervenir une non linéarité qui explose au bord du domaine où l’équation est posée. La présence du terme singulier entraine un manque de régularité des solutions. Ce défaut de régularité génère en conséquence un manque de compacité qui ne permet pas d’appliquer directement les méthodes classiques d’analyse non linéaires pour démontrer l’existence de solutions et discuter les propriétés de régularité et de comportement asymptotique des solutions. Pour contourner cette difficulté dans le contexte des problèmes que nous avons étudiés, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord en combinant diverses méthodes : méthodes de monotonie (reliées au principe du maximum), méthodes variationnelles, argument de convexité, méthodes d’interpolation dans les espaces de Sobolev, méthodes de point fixe. / In this thesis I have studied the Evolution p-laplacian equation with singular nonlinearity. We start by studying the corresponding elliptic problem and then by defining a proper cone in a suitable Sobolev space find the uniqueness of the solution. Taking that into account and using the semi discretization in time we arrive at the uniqueness and existence result. Next we prove some regularity theorem using tools from Nonlinear Semigroup theory and Interpolation spaces. We also establish some related result for the laplacian case where we improve our result on the existence and regularity, due to the non degeneracy of the laplacian. In another related work we work with a semilinear equation with singular nonlinearity and using the moving plane method prove the symmetry properties of any classical solution. We also give some related apriori estimates which together with the symmetry provide us the existence of solution using the bifurcation result.

Identiferoai:union.ndltd.org:theses.fr/2011PAUU3032
Date28 September 2011
CreatorsBal, Kaushik
ContributorsPau, Giacomoni, Jacques
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds