Return to search

Modélisation et développement d'une plateforme intelligente pour la capture d'images panoramiques cylindriques / Modeling and design of a smart system for capturing cylindrical panoramic images

Dans la plupart des applications de robotique, un système de vision apporte une amélioration significative de la perception de l’environnement. La vision panoramique est particulièrement intéressante car elle rend possible une perception omnidirectionnelle. Elle est cependant rarement utilisée en pratique à cause des limitations technologiques découlant des méthodes la permettant. La grande majorité de ces méthodes associent des caméras, des miroirs, des grands angles et des systèmes rotatifs ensembles pour créer des champs de vision élargis. Les principaux défauts de ces méthodes sont les importantes distorsions des images et l’hétérogénéité de la résolution. Certaines autres méthodes permettant des résolutions homogènes, prodiguent un flot de données très important qui est difficile à traiter en temps réel et sont soit trop lents soit manquent de précision. Pour résoudre ces problèmes, nous proposons la réalisation d’une caméra panoramique intelligente qui présente plusieurs améliorations technologiques par rapport aux autres caméras linéaires rotatives. Cette caméra capture des panoramas cylindriques homogènes avec une résolution de 6600 × 2048 pixels. La synchronisation de la capture avec la position angulaire est possible grâce à une plateforme rotative de précision. Nous proposons aussi une solution au problème que pose le gros flot de données avec l’implémentation d’un extracteur de primitives qui sélectionne uniquement les primitives invariantes des images pour donner un système panoramique de vision qui ne transmet que les données pertinentes. Le système a été modélisé et une méthode de calibrage spécifiquement conçue pour les systèmes cylindriques rotatifs est présentée. Enfin, une application de localisation et de reconstruction 3D est décrite pour montrer une utilisation pratique dans une application de type Simultaneous Localization And Mapping ( SLAM ). / In most robotic applications, vision systems can significantly improve the perception of the environment. The panoramic view has particular attractions because it allows omnidirectional perception. However, it is rarely used because the methods that provide panoramic views also have significant drawbacks. Most of these omnidirectional vision systems involve the combination of a matrix camera and a mirror, rotating matrix cameras or a wide angle lens. The major drawbacks of this type of sensors are in the great distortions of the images and the heterogeneity of the resolution. Some other methods, while providing homogeneous resolutions, also provide a huge data flow that is difficult to process in real time and are either too slow or lacking in precision. To address these problems, we propose a smart panoramic vision system that presents technological improvements over rotating linear sensor methods. It allows homogeneous 360 degree cylindrical imaging with a resolution of 6600 × 2048 pixels and a precision turntable to synchronize position with acquisition. We also propose a solution to the bandwidth problem with the implementation of a feature etractor that selects only the invariant feaures of the image in such a way that the camera produces a panoramic view at high speed while delivering only relevant information. A general geometric model has been developped has been developped to describe the image formation process and a caligration method specially designed for this kind of sensor is presented. Finally, localisation and structure from motion experiments are described to show a practical use of the system in SLAM applications.

Identiferoai:union.ndltd.org:theses.fr/2014CLF22486
Date11 September 2014
CreatorsPélissier, Frantz
ContributorsClermont-Ferrand 2, Berry, François, Ait Aider, Omar
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds