A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/179536 |
Date | January 2018 |
Creators | Basso, Maik |
Contributors | Freitas, Edison Pignaton de |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0061 seconds