Metallised polypropylene (MPP) capacitors, the dominant capacitor type used in a wide range of power and electronic circuit applications, offer high volumetric capacitor density, low cost, excellent frequency characteristics and a unique ability to recover from point failures in the dielectric film. However MPP capacitors have a generic weakness that is not well understood, failure of the self-healing process leading to ongoing catastrophic failure. The work described in this thesis includes the derivation of an improved electrical model of a capacitor and the uncovering of a mechanism for the catastrophic failure mode. Corrosion of the thin metallic field is firmly linked to drastic increases in metal film current densities and generation of hot spots in capacitors. In the work, novel formulae were derived relating capacitor parameters such as equivalent series resistance and equivalent series capacitance to frequency and physical characteristics such as metal film resistivity and physical dimensions of multiple layer capacitors. Modelling using numerical methods and diffusion equation showed that capacitors with double-end connection topology have more uniform voltage and power distribution than single-end connected capacitors. External characteristics of both connection topologies were shown to be virtually identical up to frequencies well above typical self-resonance. The aggregate spatial distribution of power from both layers and the voltage across the dielectric were found to be fundamentally different in the two circuit connection topologies. In this work it was shown that above singularity frequencies defined by distributed capacitance and metal film spreading resistance, equivalent series resistance and capacitance both fall with the square root of frequency Analysis of the inductance of typical MPP capacitors for single-end and double-end connected topologies and for circumferentially connected capacitor metallization showed that the magnitude and effect of distributed inductance in typical MPP power capacitors was insignificant compared to packaging inductance. Thermal and electrical modelling and experimental measurements showed that corrosion effects could readily account for the generic catastrophic failure mode of metallised polypropylene capacitors. Modelling showed that remnant vestiges of metal bridging corrosion gaps between the schooping and the metallic film could also pose serious thermal danger to the affected capacitor. Fusing current modelling and experimental measurement showed that fusing in metallic films typically occurred for current densities of several hundred thousand amperes per square centimetre. The partial disconnection of the metallic layers from the schooping edge by corrosion for example, was shown to result in large increases in dissipation factor and power loss in a capacitor readily explaining how capacitors
Identifer | oai:union.ndltd.org:ADTP/210209 |
Date | January 2007 |
Creators | Brown, Robert Winston, rwb@rmit.edu.au |
Publisher | RMIT University. Electrical and Computer Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Robert Winston Brown |
Page generated in 0.0012 seconds