• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical and Thermal Modelling of Low Power Metallised Polypropylene Capacitors.

Brown, Robert Winston, rwb@rmit.edu.au January 2007 (has links)
Metallised polypropylene (MPP) capacitors, the dominant capacitor type used in a wide range of power and electronic circuit applications, offer high volumetric capacitor density, low cost, excellent frequency characteristics and a unique ability to recover from point failures in the dielectric film. However MPP capacitors have a generic weakness that is not well understood, failure of the self-healing process leading to ongoing catastrophic failure. The work described in this thesis includes the derivation of an improved electrical model of a capacitor and the uncovering of a mechanism for the catastrophic failure mode. Corrosion of the thin metallic field is firmly linked to drastic increases in metal film current densities and generation of hot spots in capacitors. In the work, novel formulae were derived relating capacitor parameters such as equivalent series resistance and equivalent series capacitance to frequency and physical characteristics such as metal film resistivity and physical dimensions of multiple layer capacitors. Modelling using numerical methods and diffusion equation showed that capacitors with double-end connection topology have more uniform voltage and power distribution than single-end connected capacitors. External characteristics of both connection topologies were shown to be virtually identical up to frequencies well above typical self-resonance. The aggregate spatial distribution of power from both layers and the voltage across the dielectric were found to be fundamentally different in the two circuit connection topologies. In this work it was shown that above singularity frequencies defined by distributed capacitance and metal film spreading resistance, equivalent series resistance and capacitance both fall with the square root of frequency Analysis of the inductance of typical MPP capacitors for single-end and double-end connected topologies and for circumferentially connected capacitor metallization showed that the magnitude and effect of distributed inductance in typical MPP power capacitors was insignificant compared to packaging inductance. Thermal and electrical modelling and experimental measurements showed that corrosion effects could readily account for the generic catastrophic failure mode of metallised polypropylene capacitors. Modelling showed that remnant vestiges of metal bridging corrosion gaps between the schooping and the metallic film could also pose serious thermal danger to the affected capacitor. Fusing current modelling and experimental measurement showed that fusing in metallic films typically occurred for current densities of several hundred thousand amperes per square centimetre. The partial disconnection of the metallic layers from the schooping edge by corrosion for example, was shown to result in large increases in dissipation factor and power loss in a capacitor readily explaining how capacitors
2

The Credibility Study of Ocean Ambient Noise Prediction Equation

Wang, Chien-Jen 09 September 2009 (has links)
Ocean Ambient Noise covers wide range except target signal in the sonar equation and is an influential parameter in sonar performance. Empirical equation obtained from linear regression of wind speed and ambient noise data is a common method to predict the noise level. Both ambient noise and wind speed data collected from experiments in southwest and northeast Taiwan sea were analyzed in statistics and time series. Experiment data was also used for prediction equations and further analysis. Coefficient of determination (r2) and F-test for the slope of the regression line were used to estimate how noise fit with wind speed data and the credibility of the regression. The result of the analysis was that the distribution of r2 changes with regions. The values of r2 calculated from northeast experiment data are higher than southwest because of the high percentage of high wind speed. The data from the northeast experiment is considered more appropriate for the prediction of noise level because the higher value of r2. All results of F-test showed the correlation between wind speed are statistically significant except the winter data in the southwest experiment. By using these two indicators, the credibility of the prediction equation can be realized and the prediction performance of sonar is promoted.
3

Simulation and Optimization of Desiccant-Based Wheel integrated HVAC Systems

Yu-Wei Hung (11181858) 27 July 2021 (has links)
Energy recovery ventilation (ERV) systems are designed to decrease the energy consumed by building HVAC systems. ERV’s scavenge sensible and latent energy from the exhaust air leaving a building or space and recycle this energy content to pre-condition the entering outdoor air. A few studies found in the open literature are dedicated to developing detailed numerical models to predict or simulate the performance of energy recovery wheels and desiccant wheels. However, the models are often computationally intensive, requiring a lot of time to perform parametric studies. For example, if the physical characteristics of a study target change (e.g., wheel diameter or depth) or if the system runs at different operating conditions (e.g., wheel rotation speed or airflow rate), the model parameters need to be recalculated. Hence, developing a mapping method with better computational efficiency, which will enable the opportunity to conduct extensive parametric or optimal design studies for different wheels is the goal of this research. In this work, finite difference method (FDM) numerical models of energy recovery wheels and desiccant wheels are established and validated with laboratory test results. The FDM models are then used to provide data for the development of performance mapping methods for an energy wheel or a desiccant wheel. After validating these new mapping approaches, they are employed using independent data sets from different laboratories and other sources available in the literature to identify their universality. One significant characteristic of the proposed mapping methods that makes the contribution unique is that once the models are trained, they can be used to predict performance for other wheels with different physical geometries or different operating conditions if the desiccant material is identical. The methods provide a computationally efficient performance prediction tool; therefore, they are ideal to integrate with transient building energy simulation software to conduct performance evaluations or optimizations of energy recovery/ desiccant wheel integrated HVAC systems.

Page generated in 0.1091 seconds