• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy simulation for improved ventilation system in a collection of Swedish multi-family houses

Zhang, Taoju January 2017 (has links)
Building sector takes a large part of Swedish domestic energy use. Swedish government had set goal that required energy consumption should decrease by 20% in year 2020 compared to 1995. Public house companies will play an important role in the process.  The work studies a typical Swedish Multi-family dwelling, built in 1960s and belonging to Älvkarlebyhus AB. These buildings were given enhanced air tightness in recent years which yielded a good result. This work focuses on improving the old ventilation system and decreasing energy consumption.  Building energy simulation tool IDA ICE was used to model the object building and to examine the effectiveness of the new system. The tested energy efficiency measures include upgraded ventilation system with heat exchanger, and the installation of demand control (DCV) to the ventilation. Both energy, environmental and economic aspects are considered in the study. The result showed the total energy demand decreased 35% with renovation. Total investment for all buildings correspond to 5 760 000 SEK. New system could save 237 872 SEK/year and payback time will be 24 years.
2

The mothership - a mixed-use high-density proposal to combat urban sprawl

Bowley, Wesley 30 September 2019 (has links)
The built environment is responsible for a large portion of total energy use and emissions. A large portion comes from the buildings themselves, but also the transportation system to move people around. As global populations grow, and more people migrate to cities, it is critically important that new city growth is done in the most sustainable manner possible. The typical North American pattern of urban growth is urban sprawl, characterized by single use type zoning, low density, transportation system dominated by personal vehicles, and poor public transit. Urban sprawl has numerous downsides, including poorer energy efficiency in buildings and infrastructure, more congestion and higher emission from vehicles, as well as many negative health effects. This thesis presents the concept of a Mothership, a large, high-density mixed-use building designed to combat urban sprawl and minimize energy use and emissions of the built environment. A mothership is designed to provide all the amenities and housing of a typical suburb for 10,000 people. The analysis in this thesis employ building simulation tools to model various mothership designs and analyse the operational and embodied energy and carbon emissions for each design, and compare it to base cases of more traditional building use types such as single detached homes, and different types of apartment buildings. The effect of high-performance building envelopes and other building materials on operational and embodied energy and emissions are analysed. A multi objective optimization analysis is performed to determine which technologies and combinations of technologies provide the lowest cost solution to meet the mothership’s energy demands while also minimizing emissions. The mothership’s effect on transportation emissions is also investigated. The building’s mixed-use nature allows trips to be satisfied within walking distance in the building. The high concentration of people makes for a good anchor load for public transportation, so the emissions reductions of implementing a bus rapid transit system from the mothership to the central business district is estimated. To reduce transportation emissions further, the effect of an electric car share fleet for mothership residents use is also quantified. The energy system of a mothership is optimized, along with base cases of single detached homes, under numerous scenarios. These scenarios are designed to explore how the energy system changes in an attempt to answer a series of research questions. Some of the measures explored are a high carbon tax, net metering, and emissions limits of net zero, and negative emissions with two different electrical grid carbon intensities. Results showed that a highly insulated, timber framed mothership can achieve very high reductions in energy use and emissions. Overall it showed reductions of 71%, 73%, and 74% in operational energy, embodied energy and embodied carbon respectively, over a baseline case of single detached homes. It was estimated that transportation emissions could be reduced by 58% through the mixed-use development reducing the number of trips and electrically powered transportation vehicles and bus rapid transit. This gives a combined total emissions reduction of 61%. Energy system optimization showed that the mothership design in achieved far lower costs and emissions (4 and 8.7 times lower respectively) than the base case of single detached homes. Of the mothership cases examined, the most expensive case was the one which had a carbon tax, with an annualized cost of $4.3 million. The case with the lowest annualized cost was one with, among other factors, a net zero carbon emissions restriction (annualized cost of $3.08 million. Many of the cases had negative operating costs due to the sale of renewable energy or carbon credits. This illustrates that the integration of renewable energy technologies is not only beneficial for reducing emissions but can also act as an income pathway for energy systems. / Graduate
3

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates

Im, Piljae 2009 December 1900 (has links)
A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmann's method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K- 12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.
4

A methodology to evaluate energy savings and NOx emissions reductions from the adoption of the 2000 International Energy Conservation Code (IECC) to new residences in non-attainment and affected counties in Texas

Im, Piljae 30 September 2004 (has links)
Currently, four areas of Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because they exceeded the national one-hour ground-level ozone standard of 0.12 parts-per-million (ppm). Ozone is formed in the atmosphere by the reaction of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx) in the presence of heat and sunlight. In May 2002, The Texas State Legislature passed Senate Bill 5, the Texas Emissions Reduction Plan (TERP), to reduce the emissions of NOx by several sources. As part of the 2001 building energy performance standards program which is one of the programs in the TERP, the Texas Legislature established the 2000 International Energy Conservation Code (IECC) as the state energy code. Since September 1, 2001, the 2000 IECC has been required for newly constructed single and multifamily houses in Texas. Therefore, this study develops and applies portions of a methodology to calculate the energy savings and NOx emissions reductions from the adoption of the 2000 IECC to new single family houses in non-attainment and affected counties in Texas. To accomplish the objectives of the research, six major tasks were developed: 1) baseline data collection, 2) development of the 2000 IECC standard building simulation, 3) projection of the number of building permits in 2002, 4) comparison of energy simulations, 5) validation and, 6) NOx emissions reduction calculations. To begin, the 1999 standard residential building characteristics which are the baseline construction data were collected, and the 2000 IECC standard building characteristics were reviewed. Next, the annual and peak-day energy savings were calculated using the DOE-2 building energy simulation program. The building characteristics and the energy savings were then crosschecked using the data from previous studies, a site visit survey, and utility billing analysis. In this thesis, several case study houses are used to demonstrate the validation procedure. Finally, the calculated electricity savings (MWh/yr) were then converted into the NOx emissions reductions (tons/yr) using the EPA's eGRID database. The results of the peak-day electricity savings and NOx emissions reductions using this procedure are approximately twice the average day electricity savings and NOx emissions reductions.
5

Malaysia, future building energy simulation

Baharum, Faizal Bin January 2012 (has links)
Many scientists have accepted that human activities are the major cause of climate change and global warming. Knowledge on the effect this will have on office buildings and energy consumption in the future is essential. Thus the assessment of future building energy consumption is becoming more important especially in countries such as Malaysia where the majority of the office buildings depend on air-conditioning to maintain the occupants level of comfort. This research explores the effect of future climate change weather on the energy consumption of office buildings in Malaysia, by using simulation software. Simulated weather data sets HadCM3 were supplied by the Hadley Centre in the United Kingdom for the recent past and for the future up to 2099. Test Reference Years (TRYs) were selected from this data using the Finkelstein-Schafer Statistic (FS) method for four time slices, namely TRYs 1990-2007, 2010-2039, 2040-2069 and 2070-2099. The HadCM3 data was validated by comparing the 1990-2007 TRY with a TRY selected by the same method and period from the measured weather. The Hadley data was supplied as daily values, but the building simulation software required hourly values. Algorithms were therefore used to generate hourly values from the daily data for the relevant variables (dry bulb temperature, relative humidity, wind speed and global solar radiation) and to decompose global solar radiation into direct and diffuse radiation. Two different office building were modelled in the simulation software, one imaginary simplified typical building and one real building. The sensible and latent annual cooling loads were found for each building for each different TRY. A sensitivity analysis was also performed to investigate the effect on cooling load of changes in building design as possible ways of mitigating the effects of climate change. It was found that climate change will increases the building energy consumption by 13.6 percent in future and better understanding on building design will reduce this effect.
6

A BIM-based Interoperability Platform in Support of Building Operation and Energy Management

Xiong, Yunjie 18 March 2020 (has links)
Building energy efficiency is progressively becoming a crucial topic in the architecture, engineering, and construction (AEC) sector. Energy management tools have been developed to promise appropriate energy savings. Building energy simulation (BES) is a tool mainly used to analyze and compare the energy consumption of various design/operation scenarios, while building automation systems (BAS) works as another energy management tool to monitor, measure and collect operational data, all in an effort to optimize energy consumption. By integrating the energy simulated data and actual operational data, the accuracy of a building energy model can be increased while the calibrated energy model can be applied as a benchmark for guiding the operational strategies. This research predicted that building information modeling (BIM) would link BES and BAS by acting as a visual model and a database throughout the lifecycle of a building. The intent of the research was to use BIM to document energy-related information and to allow its exchange between BES and BAS. Thus, the energy-related data exchange process would be simplified, and the productive efficiency of facility management processes would increase. A systematic literature review has been conducted in investigating the most popular used data formats and data exchange methods for the integration of BIM/BES and BAS, the results showed the industry foundation classes (IFC) was the most common choice for BIM tools mainly and database is a key solution for managing huge actual operational datasets, which was a reference for the next step in research. Then a BIM-based framework was proposed to supporting the data exchange process among BIM/BES/BAS. 4 modules including BIM Module, Operational Data Module, Energy Simulation Module and Analysis and Visualization Module with an interface were designed in the framework to document energy-related information and to allow its exchange between BES and BAS. A prototype of the framework was developed as a platform and a case study of an entire office suite was conducted using the platform to validate this framework. The results showed that the proposed framework enables automated or semi-automated multiple-model development and data analytics processes. In addition, the research explored how BIM can enhance the application of energy modeling during building operation processes as a means to improve overall energy performance and facility management productivity. / Doctor of Philosophy / Building energy efficiency is progressively becoming a crucial topic in the architecture, engineering, and construction (AEC) sector, promising appropriate energy savings can be achieved over the life cycle of buildings through proper design, construction, and operation. Energy management tools have been developed towards this end. Building energy simulation (BES) is a tool mainly used to analyze and compare the energy consumption of various design/operation scenarios. These instances include the selection of both new and retrofit designs and for building codes, building commissioning, and real-time optimal control, among others. The main challenge surrounding BES is the discrepancy between quantitative results and actual performance data. Building automation systems (BAS), or a part of BAS which is often referred to as building energy management systems (BEMS), works as another energy management tool to monitor, measure and collect operational data, all in an effort to optimize energy consumption. The key disadvantage to the more general tool of BAS in energy management is that the data sets collected by BAS are typically too large to be analyzed effectively. One potential solution to the lack of effective energy management analysis may lie in the integration of BES and BAS. Actual operational data can be compared with simulation results in assessing the accuracy of an energy model while the energy model can be applied as a benchmark for evaluating the actual energy consumption and optimizing control strategies. The presented research predicted that building information modeling (BIM) would link BES and BAS by acting as a visual model and a database throughout the lifecycle of a building. The intent of the research was to use BIM to document energy-related information and to allow its exchange between BES and BAS. Thus, the energy-related data exchange process would be simplified, and the productive efficiency of facility management processes would increase. More specifically, this research posits the framework of integrating BIM, BES, and BAS to produce a seamless and real-time energy-related information exchange system. The proposed framework enables automated or semi-automated multiple-model development and data analytics processes. In addition, the research explored how BIM can enhance the application of energy modeling during building operation processes as a means to improve overall energy performance and facility management productivity.
7

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings

Oh, Sukjoon 16 December 2013 (has links)
Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases, special features such as active and passive solar systems, photovoltaic systems, and lighting and daylighting systems. Unfortunately, many high performance buildings today do not perform the way they were simulated. One potential reason for this discrepancy is that designers using the simulation programs do not understand the analysis methods that the programs are based on and therefore they may have unreasonable expectations about the system performance or use. The purpose of this study is to trace the origins of a variety of simulation programs and the analysis methods used in the programs to analyze high performance buildings in the United States. Such an analysis is important to better understand the capabilities of the simulation programs so they can be used more accurately to simulate the performance of an intended design. The goal of this study is to help explain the origins of the analysis methods used in whole-building energy simulation, solar system analysis simulation or design, and lighting and daylighting analysis simulation programs. A comprehensive history diagram or genealogy chart, which resolves discrepancies between the diagrams of previous studies, has been provided to support the explanations for the above mentioned simulation programs.
8

Heat demand profiles of buildings' energy conservation measures and their impact on renewable and resource efficient district heating systems

Lundström, Lukas January 2016 (has links)
Increased energy performance of the building stock of European Union is seen as an important measure towards mitigating climate change, increasing resource utilisation efficiency and energy supply security. Whether to improve the supply-side, the demand-side or both is an open issue. This conflict is even more apparent in countries such as Sweden with a high penetration of district heating (DH). Many Swedish DH systems have high share of secondary energy resources such as forest industry residuals, waste material incineration and waste heat; and resource efficient cogeneration of electricity in combined heat and power (CHP) plants. When implementing an energy conservation measure (ECM) in a DH connected building stock, it will affect the operation of the whole DH system. If there are CHP plants and the cogeneration of electricity decreases due to an ECM, and this electricity is valued higher than the fuel savings, the consequences of the ECM would be negative.  These complex relationships are investigated by conducting a case study on the Eskilstuna DH system, a renewable energy supply system with relatively high share of cogenerated electricity. Heat demand profiles of ECMs are determined by building energy simulation, using recently deep energy retrofitted multifamily buildings of the “Million Programme”-era in Eskilstuna as model basis. How implementing ECMs impact on the DH system’s heat and electricity production under different electricity revenue scenarios has been computed and evaluated in terms of resource efficiency and CO2 emissions.  The results show that different ECMs in the buildings impact differently on the DH system. Measures such as improved insulation level of the building’s envelope, that decrease the heat demand’s dependence to outdoor temperature, increase the amount of cogenerated electricity. While measures such as thermal solar panels, which save heat during summer, affects the absolute amount of cogenerated electricity negatively. Revenues from cogenerated electricity influence the amount of cost-effectively produced electricity much more than the impact from ECMs. Environmental benefits of the ECMs, measured in CO2 emissions and primary energy consumption, are quite small in DH systems that have high share of forest residual fuels and electricity cogeneration. The consequences can even be negative if ECMs lead to increased need of imported electricity that is produced resource inefficiently or/and by fossil fuels. However, all studied ECMs increase the relative amount of cogenerated electricity, the ratio between amount of cogenerated electricity and the heat load. This implied that all ECMs increase the overall efficiency of the Eskilstuna DH system.
9

Expanding the applicability of residential economizers through HVAC control strategies

Kaufman, David E. 23 August 2010 (has links)
This study seeks to expand the range of climates and conditions in which free cooling from an economizer can replace air conditioning power consumption in residential applications. To explore this issue, we first discretize a simple building model in space and in time. We then solve the associated energy and mass balances for the estimated hourly heating and cooling loads and humidity conditions with respect to an annual climate profile. We propose a forecast-based algorithm to control the rate of outdoor airflow brought in by an economizer, in response to the upcoming cooling load to be experienced by the interior airspace. The algorithm takes advantage of a range of acceptable temperatures for thermal comfort by precooling the envelope overnight to delay the onset of cooling demand during the day. In order to consider the highest potential benefit from such an algorithm, we bypass the considerable problem of forecast accuracy by basing the inputs on the upcoming cooling load according to an initial simulation of the full year. On the whole, even with the forecast-based control, the results of the study have much in common with previous findings in the literature. Precooling works better to reduce cooling load in cases of higher thermal and moisture mass, but a humid climate severely restricts when free cooling is beneficial. For the example house considered here with the Austin climate and other assumptions, the effect of the proposed forecast-based economizer control was to greatly reduce the indoor air cooling load while greatly increasing the number of annual hours of unacceptably high indoor humidity. When we adjusted the forecast-based algorithm to avoid the excess humidity, the remaining reduction in cooling load was not significant. To investigate further how a forecast-based economizer could reduce cooling load in humid climates, the prinicipal task should be to extend the control algorithm to forecast and manage upcoming indoor humidity levels in the same fashion as was done in this study for indoor air temperature. / text
10

An Analysis Of The Thermal Performance Of Metu Staff Housing Units And Calibration Of Their Simulated Model

Bagci, Mediha Ozlem 01 June 2008 (has links) (PDF)
The aim of this study was to investigate the thermal performance of residential units in the Middle East Technical University (METU) Campus, Ankara. The study was conducted on the unoccupied residential units to eliminate the occupant interventions. There were only three unoccupied residential units in the study period, hence sample was considered as randomly selected. Case study units were triplex row houses and all physical characteristics were identical apart from their orientations. The thermal performance of these three residential units was assessed by compiling data on temperature and relative humidity from a number of their rooms on certain days in January and February. The study was conducted in winter months, because heating loads are more significant than cooling loads for energy consumption in Ankara / the measurement period was determined according to the coldest days of the year. In this context, the temperature and humidity charts were evaluated and one of the units was simulated using the software tool Ecotect v.5.20. The simulation temperature charts demonstrate similar behavior and trends as the measured temperature / although, it was approximately 4 0C lower than the measured temperature. The possible reason for such a difference may be the precision of the material properties. Six different calibrations were tested by changing the thermal properties of the envelope materials to obtain comparable results with the measured temperature readings. Based on the calibrated model, it was found that an increase in the U-value of the envelope materials did not have a significant effect on the simulated temperature charts.

Page generated in 0.1594 seconds