• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energisimulering av ett nordsvenskt plusenergihus med kombination av bergvärme och solceller

Henriksen, Theodor January 2020 (has links)
Energianvändningen i världen växer för varje år, vilket i sin tur bidrar med ökade mängder utsläpp av växthusgaser till atmosfären. På grund av den ökade energianvändningen blir intresset för energisnåla byggnader allt högre med tiden. I detta projekt har en nordligt placerad fastighet med en Atemp på 716 m2 i Gnarp simulerats med hjälp av IDA Indoor Climate and Energy (IDA ICE) samt WINSUN. Fastigheten har två våningar med åtta lägenheter totalt och är uppvärmd med bergvärme då fjärrvärmenätet ligger för långt ifrån området. Tanken med byggnaden är att den ska uppnå kriterierna för ett plusenergihus, vilket innebär att fastigheten ska generera mer energi än vad den gör av med via en solcellsanläggning som monteras på taket. Enligt de teoretiska resultat som simuleringen visar så kan fastigheten klassas som ett plusenergihus, då solcellsanläggningen på taket producerar mer energi än vad som används årligen. Det innebär att möjligheterna för byggnation av ett plusenergihus i nordligare områden i Sverige finns, där temperaturer varierar kraftigt under årets gång och kan gå lägre än -30°C under vintertid. Den årliga elproduktionen ligger över 26 700 kWh/år och elanvändningen hamnar på 16 400 kWh/år, där tappvarmvattnet står för den största delen använt el. Det innebär att den genererar ungefär 10 300 kWh/år i överskott relativt till inköpt el-energi. Huset är välisolerat och har smart placerade glasytor för värmeinsläpp. Det inkluderar en effektiv värmepump, ett FTX-System för värmeåtervinning via ventilationssystemet samt ett solcellssystem på taket som i sin tur bidrar till möjligheten för en energiproducering som är högre än energianvändningen, därav en plusenergihus-klassning. Under energianvändningsprocessen så har den årliga uppvärmningen, tappvarmvattnet samt fastighetselen tagits till godo i beräkningarna för bedömning av byggnadens energiprestanda. Eftersom solcellerna producerar mer energi under sommaren, vilket medföljer att överskott på elproduktionen uppstår under vissa perioder av året, så innebär det att el kan säljas via elnätet till en elhandlare. / The interest in low-energy-houses has risen in recent years as the energy usage around the globe is constantly increasing, resulting in ever-increasing amounts of greenhouse gases in the atmosphere. In this project, the energy consumption of a building in a northern area of Sweden, Gnarp, with an Atemp of 716m2 was simulated using IDA indoor Climate and Energy (IDA ICE) and WINSUN. The building has two floors and is comprised of eight apartments. It is heated using geothermal heating since it is not located close enough to a district heating area. The goal of the simulation was to determine if this building is an energy-plus-house, whereby a PV-system mounted on the rooftop allows for the energy production-value of the building to be higher than the energy-usage. The theoretical results of the simulation show that this building is indeed an energy-plus-house since the PV-system is generating more energy than the yearly usage of the building. This simulation shows that it is possible to build an energy-plus-house in northern areas of Sweden where temperatures are highly variable and can go below -30°C during winter season. It indicates a yearly electricity-production of over 26 700 kWh/year and a usage of approximately 16 400 kWh/year, where the domestic hot water accounts for the highest usage of electricity. This means that the building generates an electricity surplus of approximately 10 300 kWh/year. The building is well isolated and has well placed windows for heat generation via the sun. It includes an effective heat pump, an FTX-system, and solar panels on the roof which gives the opportunity for an energy-production that is larger than the energy-usage, which in turn gives the opportunity for an energy-plus-house classification. The heating, domestic hot water, and the building electricity were all considered when calculating the estimation of the energy-quality of the property. The PV-system generates more energy during the summer, which results in an overproduction of electricity at certain times of the year. The extra electricity produced can be sold to the electric utility.
2

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings

Oh, Sukjoon 16 December 2013 (has links)
Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases, special features such as active and passive solar systems, photovoltaic systems, and lighting and daylighting systems. Unfortunately, many high performance buildings today do not perform the way they were simulated. One potential reason for this discrepancy is that designers using the simulation programs do not understand the analysis methods that the programs are based on and therefore they may have unreasonable expectations about the system performance or use. The purpose of this study is to trace the origins of a variety of simulation programs and the analysis methods used in the programs to analyze high performance buildings in the United States. Such an analysis is important to better understand the capabilities of the simulation programs so they can be used more accurately to simulate the performance of an intended design. The goal of this study is to help explain the origins of the analysis methods used in whole-building energy simulation, solar system analysis simulation or design, and lighting and daylighting analysis simulation programs. A comprehensive history diagram or genealogy chart, which resolves discrepancies between the diagrams of previous studies, has been provided to support the explanations for the above mentioned simulation programs.

Page generated in 0.1507 seconds