• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Urban Energy Information Modeling: A Framework To Quantify The Thermodynamic Interactions Between The Natural And The Built Environment That Affect Building Energy Consumption

Ramesh, Shalini 01 February 2018 (has links)
By 2050, the world’s population is expected to reach 9.7 billion, with over half living in urban settlements (United Nations, 2015). Planning and designing new urban developments and improving existing infrastructure will create or reshape urban landscapes and will carry significant implications for energy consumption, infrastructure costs, and the urban microclimate on a larger scale. Researchers and industry professionals must recognize how changes in land use affect the urban microclimate and, therefore, building energy consumption. Built environment and microclimate studies commonly involve modeling or experimenting with mass and energy exchanges between natural and the built environment. Current methods to quantify these exchanges include the isolated use of microclimate and building energy simulation tools. However, current urban planning and building design processes lack a holistic and seamless approach to quantifying all thermodynamic interactions between natural and built environments; nor is there a method for communicating and visualizing the simulated building energy data. This dissertation has developed a coupling method to quantify the effects of the urban microclimate on building energy consumption. The coupling method was tested on a medium-sized office building and applied to a design case, a redevelopment project in Pittsburgh, PA. Three distinct approaches were used. First, to develop the coupling method, a study was conducted to quantify the importance of accurate microclimate model initialization for achieving simulation results that represent measured data. This initialization study was conducted for 24 cases in the Pittsburgh climate. The initialization study developed a rule-based method for estimating the number of ENVI-met simulations needed to predict the microclimate for an annual period. Second, a coupling method was developed to quantify these microclimate effects on building energy consumption. The Center for Sustainable Landscapes (CSL) building was used as a test-case for this coupling method to measure improvement in predicting building heating and cooling energy consumption. Results show that the coupling method, more than the TMY3 weather data used for energy simulations, can improve building energy consumption predictions for the winter and summer months. Third, to demonstrate industry implications, the coupling method was applied to a design case, the Lower Hill District Redevelopment, Pittsburgh, PA. Comparing the decoupled energy model and TMY3 weather data revealed a high degree of variation in the heating and cooling energy consumption. Overall results reinforced the hypothesis that building surface level coupling is not essential if the energy model accounts for the microclimate effects. A Design Decision Support (DDS) method was also developed as a tool for project stakeholders to communicate high-fidelity simulated energy data.
22

The impact from varying wind parameters and climate zones on building energy use : A case study on two multi-family buildings in Sweden using building energy simulation

Tamilvanan, Karthickraj, Mathipadi, Sai Kiran January 2020 (has links)
Globally, buildings utilize 35 % of the final energy use and contribute to approximately one-third of CO2 emissions. Hence, reducing the energy use of buildings contributes to a large amount of CO2 emissions to be decreased. The building’s energy use is affected by many parameters, including wind which plays an important role in building energy use. In this thesis, we aim to analyze the impact of wind parameters on building’s energy use on two multi-family building types with natural ventilation at various wind sheltering conditions at different climatic zones in Sweden. Building energy simulation models (BES) of a standalone and an attached building located in Visby, Sweden, were constructed with the use of the dynamic BES IDA ICE. Luleå and Malmö were taken as other two study locations to investigate the impact from different climate zones. The simulations were performed with the constructed calculation models, with the various wind sheltering conditions at the different climatic zones to calculate the energy use of the buildings and ventilation and infiltration losses. The sensitivity analysis was then carried out based on changing the wind profile of the climate file to evaluate the impact of wind on the ventilation and infiltration losses, as well as the heat energy use of the building. The results showed that the energy use for space heating of the attached building was 89 kWh/m2 (38 %) lower than the standalone building. The energy use varies between 9–20 kWh/m2 (3–10 %) considering the exposed, semi-exposed and sheltered wind condition for the two building types. In the different climate zones, Luleå has 47 kWh/m2 higher energy use compared to Visby and Malmö for the standalone building. The corresponding figure for the attached building is 25 kWh/m2. The sensitivity analysis show that when the wind speed is increased by 100 %, the ventilation and infiltration losses increase between 3563–18683 kWh (54–61 %) while the energy use of the building increases between 11–54 kWh/m2 (20–27 %).
23

Demonstrating the significance of microclimate on annual building energy simulations using RadTherm

Sommerfeldt, Nelson January 2012 (has links)
Buildings account for over 35% of the energy demand in OECD countries, making them a prime target for improvement. (EIA 2011) To help building owners reduce energy usage, ratings systems such as LEED have been developed. A prerequisite for certification is the demonstration of energy efficiency through computer modeling; however, the complex nature of building energy simulations too often leads to errors of up to 30% (Turner and Frankel 2008). One source of significant error can be the assumptions made of environmental conditions, which are often simplified to speed up simulations. To demonstrate the significance of active microclimate modeling, a building energy model combined with a microclimate model has been created in RadTherm, a commercial CAE thermal solver. Simulations are run using Passive House construction in three types of environments, and demonstrate an increase in energy demand over an annual time scale when microclimatic components are included. The increase in demand is less than 1%, however the decrease in radiant heat losses are up to 30%. Using the same methodology with revisions to the building construction and urban geometry, a larger increase in energy demand is expected.
24

Développement d’une méthodologie pour la garantie de performance énergétique associant la simulation à un protocole de mesure et vérification / Methodology for energy performance contracting based on simulation and a measurement protocol

Ligier, Simon 28 September 2018 (has links)
Les écarts communément observés entre les prévisions de consommations énergétiques et les performances réelles des bâtiments limitent le développement des projets de construction et de réhabilitation. La garantie de performance énergétique (GPE) a pour vocation d’assurer des niveaux de consommations maximaux et donc de sécuriser les investissements. Sa mise en place fait cependant face à plusieurs problématiques, notamment techniques et méthodologiques. Ces travaux de thèse se sont intéressés au développement d’une méthodologie pour la GPE associant les outils de simulation énergétique dynamique (SED) à un protocole de mesure et vérification. Elle repose d’abord sur la modélisation physico-probabiliste du bâtiment. Les incertitudes sur les paramètres physiques et techniques, et les variabilités des sollicitations dynamiques sont modélisées et propagées dans la SED. Un modèle de génération de données météorologiques variables a été développé. L’étude statistique des résultats de simulation permet d’identifier des modèles liant les consommations d’intérêt à des facteurs d’ajustement, caractéristiques des conditions d’exploitation. Les méthodes de régression quantile permettent de déterminer le quantile conditionnel des distributions et caractérisent donc conjointement la dépendance aux facteurs d’ajustement et le niveau de risque de l’engagement. La robustesse statistique de ces méthodes et le choix des meilleurs facteurs d’ajustement ont été étudiés, tout comme l’influence des incertitudes sur la mesure des grandeurs d’ajustement en exploitation. Leur impact est intégré numériquement en amont de la méthodologie. Cette dernière est finalement mise en œuvre sur deux cas d’étude : la rénovation de logements, et la construction de bureaux. / Discrepancies between ex-ante energy performance assessment and actual consumption of buildings hinder the development of construction and renovation projects. Energy performance contracting (EPC) ensures a maximal level of energy consumption and secures investment. Implementation of EPC is limited by technical and methodological problems.This thesis focused on the development of an EPC methodology that allies building energy simulation (BES), and measurement and verification (M&V) process anticipation. The building parameters’ uncertainties and dynamic loads variability are considered using a Monte-Carlo analysis. A model generating synthetic weather data was developed. Statistical studies of simulation results allow a guaranteed consumption limit to be evaluated according to a given risk. Quantile regression methods jointly capture the risk level and the relationship between the guaranteed energy consumption and external adjustment factors. The statistical robustness of these methods was studied as well as the choice of the best adjustment factors to consider. The latter will be measured during building operation. The impact of measurement uncertainties is statistically integrated in the methodology. The influence of M&V process accuracy is also examined. The complete EPC methodology is finally applied on two different projects: the refurbishment of a residential building and the construction of a high energy performance office building.
25

NANDRAD 1.4 building simulation model

Paepcke, Anne 01 December 2017 (has links) (PDF)
NANDRAD is a dynamic building energy simulation program. It calulates heating/cooling requirements and electric power consumption with respect to realistic climatic conditions and dynamic room usage. The model includes one-dimensional spatially resolved heat transport through multi-layered walls and thermal storage of solid components (room furniture/building walls). Consequently, massive constructions forms in the European area are very well represented. Further, NANDRAD calculates geometrical long radiation heat exchange inside the room. Heating systems may be modeled with a high level of geometrical detail, i.e. surface heating systems as part of the wall constructions and radiant heaters inside the room. NANDRAD can be applied for passive building simulation, energy optimization and thermal comfort analysis with respect to a very detailed building representation. In this terms, the model supports the simulation of a large number of zones and walls without need for subgrouping or other model reduction strategies.
26

Simulation and Optimization of Desiccant-Based Wheel integrated HVAC Systems

Yu-Wei Hung (11181858) 27 July 2021 (has links)
Energy recovery ventilation (ERV) systems are designed to decrease the energy consumed by building HVAC systems. ERV’s scavenge sensible and latent energy from the exhaust air leaving a building or space and recycle this energy content to pre-condition the entering outdoor air. A few studies found in the open literature are dedicated to developing detailed numerical models to predict or simulate the performance of energy recovery wheels and desiccant wheels. However, the models are often computationally intensive, requiring a lot of time to perform parametric studies. For example, if the physical characteristics of a study target change (e.g., wheel diameter or depth) or if the system runs at different operating conditions (e.g., wheel rotation speed or airflow rate), the model parameters need to be recalculated. Hence, developing a mapping method with better computational efficiency, which will enable the opportunity to conduct extensive parametric or optimal design studies for different wheels is the goal of this research. In this work, finite difference method (FDM) numerical models of energy recovery wheels and desiccant wheels are established and validated with laboratory test results. The FDM models are then used to provide data for the development of performance mapping methods for an energy wheel or a desiccant wheel. After validating these new mapping approaches, they are employed using independent data sets from different laboratories and other sources available in the literature to identify their universality. One significant characteristic of the proposed mapping methods that makes the contribution unique is that once the models are trained, they can be used to predict performance for other wheels with different physical geometries or different operating conditions if the desiccant material is identical. The methods provide a computationally efficient performance prediction tool; therefore, they are ideal to integrate with transient building energy simulation software to conduct performance evaluations or optimizations of energy recovery/ desiccant wheel integrated HVAC systems.
27

RISK-INFORMED MULTI-CRITERIA DECISION FRAMEWORK FOR RESILIENCE AND SUSTAINABILITY ASSESSMENT OF BUILDING STRUCTURES

Asadi, Esmaeel 28 January 2020 (has links)
No description available.
28

Možnosti snížení energetické náročnosti objektů s řízenou vnitřní teplotou / Possibilities to reduce energy consumption of objects with controlled indoor temperature

Karmín, Luboš January 2019 (has links)
The field of a research of this diploma thesis is building with controlled internal temperature. The research is focused on main heat fluxes at this type of buildings and how it contributes to the energy consumption of the building. The main objective of the analysis is heat loss caused by heat flux through the building envelope and air exchange at the building. As next it is described heat gain resulting from the operation inside of the building. To obtain the results of the research part is used software on the platform Delphi Pascal, temporarily called SIM_Chlad. The aim of this computer modeling is non-stationary heat fluxes from the mentioned heat sources in the building. The computed heat balance analyzes the energy consumption of the building for a period of one year. The diploma thesis evaluates impacts reflecting local weather conditions, the structural system of the building and the operation in the building. A cooling machinery analysis is not the subject of the research at this diploma thesis.
29

Modélisation dynamique des apports thermiques dus aux appareils électriques en vue d'une meilleure gestion de l'énergie au sein de bâtiments à basse consommation / Dynamic Thermal Modeling of Electrical Appliances for Energy Management of Low Energy Buildings

Park, Herie 15 May 2013 (has links)
Ce travail propose un modèle thermique dynamique des appareils électriques dans les bâtiments basse consommation. L'objectif de ce travail est d'étudier l'influence des gains thermiques de ces appareils sur le bâtiment. Cette étude insiste sur la nécessité d'établir un modèle thermique dynamique des appareils électriques pour une meilleure gestion de l'énergie du bâtiment et le confort thermique de ses habitants.Comme il existe des interactions thermiques entre le bâtiment et les appareils électriques, sources de chaleur internes au bâtiment, il est nécessaire de modéliser le bâtiment. Le bâtiment basse consommation est modélisé dans un premier temps par un modèle simple reposantl'étude d'une pièce quasi-adiabatique. Ensuite, dans le but d'établir le modèle des appareils électriques, ceux-ci sont classés en quatre catégories selon leurs propriétés thermiques et électriques. A partir de cette classification et du premier principe de la thermodynamique, un modèle physique générique est établi. Le protocole expérimental et la procédure d'identification des paramètres thermiques des appareils sont ensuite présentés. Afin d'analyser la pertinence du modèle générique appliqué à des cas pratiques, plusieurs appareils électriques utilisés fréquemment dans les résidences – un écran, un ordinateur, un réfrigérateur, un radiateur électrique à convection et un micro-onde – sont choisis pour étudier et valider ce modèle ainsi que les protocoles d'expérimentation et d'identification. Enfin, le modèle proposé est intégré dans le modèle d'un bâtiment résidentiel développé et validé par le CSTB. Ce modèle couplé des appareils et du bâtiment est implémenté dans SIMBAD, un outil de simulation du bâtiment. A travers cette simulation, le comportement thermique du bâtiment et la quantité d'énergie nécessaire à son chauffage sur une période hivernale, ainsi que l'inconfort thermique dû aux appareils électriques durant l'été, sont observés.Ce travail fournit des résultats quantitatifs de l'effet thermique de différents appareils électriques caractérisés dans un bâtiment basse consommation et permet d'observer leur dynamique thermique et leurs interactions. Finalement, cette étude apporte une contribution aux études de gestion de l'énergie des bâtiments à basse consommation énergétique et du confort thermique des habitants. / This work proposes a dynamic thermal model of electrical appliances within low energy buildings. It aims to evaluate the influence of thermal gains of these appliances on the buildings and persuades the necessity of dynamic thermal modeling of electrical appliances for the energy management of low energy buildings and the thermal comfort of inhabitants.Since electrical appliances are one of the free internal heat sources of a building, the building which thermally interact with the appliances has to be modeled. Accordingly, a test room which represents a small scale laboratory set-up of a low energy building is first modeled based on the first thermodynamics principle and the thermal-electrical analogy. Then, in order to establish the thermal modeling of electrical appliances, the appliances are classified into four categories from thermal and electrical points of view. After that, a generic physically driven thermal model of the appliances is derived. It is established based also on the first thermodynamics principle. Along with this modeling, the used experimental protocol and the used identification procedure are presented to estimate the thermal parameters of the appliances. In order to analyze the relevance of the proposed generic model applied to practical cases, several electrical appliances which are widely used in residential buildings, namely a monitor, a computer, a refrigerator, a portable electric convection heater, and microwave are chosen to study and validate the proposed generic model and the measurement and identification protocols. Finally, the proposed dynamic thermal model of electrical appliances is integrated into a residential building model which was developed and validated by the French Technical Research Center for Building (CSTB) on a real building. This coupled model of the appliances and the building is implemented in a building energy simulation tool SIMBAD, which is a specific toolbox of Matlab/Simulink®. Through the simulation, thermal behavior and heating energy use of the building are observed during a winter period. In addition, thermal discomfort owing to usages of electrical appliances during a summer period is also studied and quantified.This work therefore provides the quantitative results of thermal effect of differently characterized electrical appliances within a low energy building and leads to observe their thermal dynamics and interactions. Consequently, it permits the energy management of low energy buildings and the thermal comfort of inhabitants in accordance with the usages of electrical appliances.
30

Étude de l’amélioration de la performance énergétique de bâtiments due à l’emploi d’enduit minéral à fort pouvoir isolant / Improving the buildings envelopes energy performance using aerogel-based insulating mineral rendering

Ibrahim, Mohamad 19 December 2014 (has links)
En France, le secteur du bâtiment est le plus grand consommateur d'énergie et représente environ 43% de la consommation totale d'énergie. L'isolation thermique dans le bâtiment est nécessaire afin d'améliorer son efficacité énergétique. Dans certains pays dont la France, la rénovation des bâtiments occupe une place essentielle dans la stratégie de transition énergétique. La stratégie mise en place consiste donc à renforcer l'isolation thermique des enveloppes de bâtiment et ceci en perdant le moins de surface habitable possible. Ceci justifie le fait de développer et de mettre en œuvre à l'avenir des matériaux super isolants comme les aérogels. Les objectifs de cette étude sont d'examiner le comportement thermique des bâtiments et d'étudier l'amélioration possible de leur efficacité énergétique en utilisant un nouvel enduit isolant à base d'aérogels de silice et ainsi que l'énergie solaire. Tout d'abord, la performance thermique et hygrothermique des murs extérieurs est étudiée afin de trouver la meilleure structure de ces murs. Deuxièmement, nous étudions l'évolution du confort thermique et du comportement énergétique des maisons en adoptant le nouvel enduit isolant comme isolation extérieure. Cette évolution a aussi été représentée par un modèle mathématique. On a comparé les résultats obtenus à l'aide de ces modèles avec les mesures expérimentales faites sur une maison récemment construite. Enfin, le potentiel de réduction de la charge de chauffage en adoptant un système actif dans la paroi est analysé. Ce système est proposé pour capter une partie de l'énergie solaire qui tombe sur la façade sud et qui est disponible pendant les journées non nuageuses en hiver, et la transférer vers la façade nord par l'intermédiaire de canalisations d'eau intégrées dans l'enduit isolant objet de l'étude. / In France, the building sector is the largest consumer of energy and accounts for about 43% of the total energy consumption. The building sector offers significant potential for improved energy efficiency through the use of high-performance insulation and energy-efficient systems. For existing buildings, renovation has a high priority in France because these buildings represent a high proportion of energy consumption and they will be present for decades to come. Nowadays, there is a growing interest in the so-called super-insulating materials, such as Aerogels. The objectives of this study are to examine the thermal behavior of buildings and to foster energy efficiency through the use of a newly developed aerogel-based insulating coating as well as the use of renewable energy sources, specifically solar energy. Firstly, the thermal and hygrothermal performance of exterior walls having different layer composition structures are examined. Secondly, the heating energy demand as well as the risk of summer overheating is examined for different construction periods and under different climates. Also, a mathematical model is built and compared to experimental measurement of a recently built full-scale house. Finally, the potential to decrease the heating load by adopting a closed wall loop system is scrutinized. The latter is a proposed system to capture some of the solar energy falling on the south facade available during non-cloudy winter days and transfer it to the north facade through water pipes embedded in the aerogel-based coating.

Page generated in 0.1167 seconds