Spelling suggestions: "subject:"building energy used"" "subject:"cuilding energy used""
1 |
Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial BuildingsKim, Hyojin 1981- 14 March 2013 (has links)
This study developed and applied a field test to evaluate the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Chartered Institute of Building Services Engineers (CIBSE)/United States Green Building Council (USGBC) Performance Measurement Protocols (PMP) for Commercial Buildings in a case-study office building in central Texas. As the first integrated protocol on building performance measurement, the ASHRAE PMP accomplished its goal of providing the standardized protocols for measuring and comparing the overall performance of a building, including energy, water, thermal comfort, Indoor Air Quality (IAQ), lighting, and acoustics. However, several areas for improvement were identified such as conflicting results from different procedures or benchmarks provided in the ASHRAE PMP; limited guidelines for performing the measurements; lack of detailed modeling techniques, graphical indices, and clear benchmarks; and some practical issues (i.e., high cost requirements and time-intensive procedures). All these observations are listed as the forty issues, including thirteen for energy, five for water, and twenty-two for Indoor Environmental Quality (IEQ).
Recommendations were developed for each issue identified. For the selected high-priority issues, twelve new or modified approaches were proposed and then evaluated against the existing procedures in the ASHRAE PMP. Of these twelve new or modified approaches, the following are the most significant developments: a more accurate monthly energy use regression model including occupancy; a monthly water use regression model for a weather-normalized comparison of measured water performance; a method how to use a vertical temperature profile to evaluate room air circulation; a method how to use LCeq – LAeq difference as a low-cost alternative to estimate low frequency noise annoyance; a statistical decomposition method of time-varying distribution of indices; and a real-time wireless IEQ monitoring system for the continuous IEQ measurements.
The application of the forty recommendations and the twelve new or modified approaches developed in this study to the ASHRAE PMP is expected to improve the applicability of the ASHRAE PMP, which aligns the overall purpose of this study. Finally, this study developed a new single figure-of-merit rating system based on the ASHRAE PMP procedures. The developed rating system is expected to improve the usability of the protocols.
|
2 |
Development of an automated methodology for calibration of simplified air-side HVAC system models and estimation of potential savings from retrofit/commissioning measuresBaltazar Cervantes, Juan Carlos 25 April 2007 (has links)
This dissertation provides one methodology to determine potential energy savings
of buildings with limited information. This methodology is based upon the simplified
energy analysis procedure of HVAC systems and the control of the comfort conditions.
Numerically, the algorithm is a tailored exhaustive search over all the independent
variables that are commonly controlled for a specific type of HVAC system. The
potential energy savings methodology has been applied in several buildings that have
been retrofitted and/or commissioned previously. Results from the determined savings
for the Zachry building at Texas A&M after being commissioned show a close
agreement to the calculated potential energy savings (about 85%). Differences are
mainly attributed to the use of simplified models.
Due to the restriction of limited information about the building characteristics and
operational control, the potential energy savings method requires the determination of
parameters that characterize its thermal performance. Thus, a calibrated building is
needed. A general procedure has been developed to carry out automated calibration of
building energy use simulations. The methodology has been tested successfully on
building simulations based on the simplified energy analysis procedure. The automated
calibration is the minimization of the RMSE of the energy use over daily conditions.
The minimization procedure is fulfilled with a non-canonical optimization algorithm, the Simulated Annealing, which mimics the Statistical Thermodynamic performance of
the annealing process. That is to say, starting at a specified temperature the algorithm
searches variable-space states that are steadier, while heuristically, by the Boltzmann
distribution, the local minima is avoided. The process is repeated at a new lower
temperature that is determined by a specific schedule until the global minimum is
found. This methodology was applied to the most common air-handler units producing
excellent results for ideal cases or for samples modified with a 1% white noise.
|
3 |
The impact from varying wind parameters and climate zones on building energy use : A case study on two multi-family buildings in Sweden using building energy simulationTamilvanan, Karthickraj, Mathipadi, Sai Kiran January 2020 (has links)
Globally, buildings utilize 35 % of the final energy use and contribute to approximately one-third of CO2 emissions. Hence, reducing the energy use of buildings contributes to a large amount of CO2 emissions to be decreased. The building’s energy use is affected by many parameters, including wind which plays an important role in building energy use. In this thesis, we aim to analyze the impact of wind parameters on building’s energy use on two multi-family building types with natural ventilation at various wind sheltering conditions at different climatic zones in Sweden. Building energy simulation models (BES) of a standalone and an attached building located in Visby, Sweden, were constructed with the use of the dynamic BES IDA ICE. Luleå and Malmö were taken as other two study locations to investigate the impact from different climate zones. The simulations were performed with the constructed calculation models, with the various wind sheltering conditions at the different climatic zones to calculate the energy use of the buildings and ventilation and infiltration losses. The sensitivity analysis was then carried out based on changing the wind profile of the climate file to evaluate the impact of wind on the ventilation and infiltration losses, as well as the heat energy use of the building. The results showed that the energy use for space heating of the attached building was 89 kWh/m2 (38 %) lower than the standalone building. The energy use varies between 9–20 kWh/m2 (3–10 %) considering the exposed, semi-exposed and sheltered wind condition for the two building types. In the different climate zones, Luleå has 47 kWh/m2 higher energy use compared to Visby and Malmö for the standalone building. The corresponding figure for the attached building is 25 kWh/m2. The sensitivity analysis show that when the wind speed is increased by 100 %, the ventilation and infiltration losses increase between 3563–18683 kWh (54–61 %) while the energy use of the building increases between 11–54 kWh/m2 (20–27 %).
|
4 |
Energy Audit and Energy Saving Measures of a Large Office Building : Bern 9 in ÖrnsköldsvikBjörklund, Lina January 2020 (has links)
There is a large potential in making the residential and service sector more energy efficient and the first step towards achieving a more efficient use of energy is to implement an energy audit. In this study a property with an approximate area of 8 000 m2, consisting of a main building and three building extensions from different eras has been examined. The main building and its extensions were built in different stages and the first one in the early 20th century and some parts of the last building extension were modified at the time that the examination was carried out. This indicates that there is a vast energy savings potential in the property and an energy audit was performed. The main aim of the study was to examine where the energy was being used and where energy could be saved. Energy saving measures has been suggested together with a calculated approximate energy decrease and payback period. The total energy savings potential for the measures is approximately 146 MWh. The energy audit showed that a large amount of electricity was being used during non-work hours and that energy was lost through the building envelope. The electricity use during non-work hours was examined during the night walk, however, it is suggested to carry out further examinations regarding the property’s vast electricity use during non-work hours. To add loose wool in the roof of B2 has an energy savings potential of 33 000 kWh/year. Another measure is to clean the heat exchangers, this measure has an energy savings potential of 26 000 kWh/year. Also it is suggested to optimize the operational hours for the lighting by implementing presence control and to decrease the energy use for ventilation by cleaning the heat exchangers. Further examinations that would improve the study would be to do measurements of the electricity and temperatures to get a better understanding of the buildings energy use. Also to model the building in a simulation tool would give a calculated energy loss that is more like the actual energy loss of the building and make the results more reliable.
|
5 |
Development of a commercial building/site evaluation framework for minimizing energy consumption and greenhouse gas emissions of transportation and building systemsWeigel, Brent Anthony 17 May 2012 (has links)
In urbanized areas, building and transportation systems generally comprise the majority of greenhouse gas (GHG) emissions and energy consumption. Realization of global environmental sustainability depends upon efficiency improvements of building and transportation systems in the built environment. The selection of efficient buildings and locations can help to improve the efficient utilization of transportation and building systems. Green building design and rating frameworks provide some guidance and incentive for the development of more efficient building and transportation systems. However, current frameworks are based primarily on prescriptive, component standards, rather than performance-based, whole-building evaluations. This research develops a commercial building/site evaluation framework for the minimization of GHG emissions and energy consumption of transportation and building systems through building/site selection.
The framework examines, under uncertainty, multiple dimensions of building/site operation efficiencies: transportation access to/from a building site; heating, ventilation, air conditioning, and domestic hot water; interior and exterior lighting; occupant conveyances; and energy supply. With respect to transportation systems, the framework leverages regional travel demand model data to estimate the activity associated with home-based work and non-home-based work trips. A Monte Carlo simulation approach is used to quantify the dispersion in the estimated trip distances, travel times, and mode choice. The travel activity estimates are linked with a variety of existing calculation resources for quantifying energy consumption and GHG emissions. With respect to building systems, the framework utilizes a building energy simulation approach to estimate energy consumption and GHG emissions. The building system calculation procedures include a sensitivity analysis and Monte Carlo analysis to account for the impacts of input parameter uncertainty on estimated building performance. The framework incorporates a life cycle approach to performance evaluation, thereby incorporating functional units of building/site performance (e.g energy use intensity).
The evaluation framework is applied to four case studies of commercial office development in the Atlanta, GA metropolitan region that represent a potential range of building/site alternatives for a 100-employee firm in an urbanized area. The research results indicate that whole-building energy and GHG emissions are sensitive to building/site location, and that site-related transportation is the major determinant of performance. The framework and findings may be used to support the development of quantitative performance evaluations for building/site selection in green building rating systems and other efficiency incentive programs designed to encourage more efficient utilization and development of the built environment.
|
6 |
Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI)Talele, Suraj Harish 12 1900 (has links)
The goal of this dissertation is to demonstrate that data from a remotely located building can be utilized for energy modeling of a similar type of building and to demonstrate how to use this remote data without physically moving the data from one server to another using Virtual Information Fabric Infrastructure (VIFI). In order to achieve this goal, firstly an EnergyPlus model was created for Greek Life Center, a campus building located at University of North Texas campus at Denton in Texas, USA. Three thermal comfort models of Fanger model, Pierce two-node model and KSU two-node model were compared in order to find which one of these three models is most accurate to predict occupant thermal comfort. This study shows that Fanger's model is most accurate in predicting thermal comfort. Secondly, an experimental data pertaining to lighting usage and occupancy in a single-occupancy office from Carnegie Mellon University (CMU) has been implemented in order to perform energy analysis of Greek Life Center assuming that occupants in this building's offices behave similarly as occupants in CMU. Thirdly, different data types, data formats and data sources were identified which are required in order to develop a city-scale urban building energy model (CS-UBEM). Two workflows were created, one for an individual scale building energy model and another one for CS-UBEM. A new innovative infrastructure called as Virtual Information Fabric Infrastructure (VIFI) has been introduced in this dissertation. The workflows proposed in this study will demonstrate in the future work that by using VIFI infrastructure to develop building energy models there is a potential of using data for remote servers without actually moving the data. It has been successfully demonstrated in this dissertation that data located at remote location can be used credibly to predict energy consumption of a newly built building. When the remote experimental data of both lighting and occupancy are implemented, 4.57% energy savings was achieved in the Greek Life Center energy model.
|
Page generated in 0.0912 seconds