Return to search

Design and Evaluation of Algorithms for Online Machine Scheduling Problems

Dans cette thèse, nous proposons et évaluons des algorithmes pour résoudre des problèmes d'ordonnancement en ligne. Pendant des décennies, les études en ordonnancement considèrent des modèles déterministes où toutes les informations nécessaires pour la définition du problème sont supposées connues à l'avance. Cette hypothèse n'est généralement pas réaliste. Ceci a motivé les études sur l'ordonnancement en ligne. Dans un problème d'ordonnancement en ligne, un algorithme doit prendre des décisions sans connaissance du futur. L'analyse compétitive est généralement la méthode utilisée pour évaluer les performances de tels algorithmes. Dans cette analyse, la performance d'un algorithme en ligne est mesurée par le ratio compétitif qui est le ratio dans le pire cas entre la performance de la solution obtenue et celle d'une solution optimale hors ligne. Nous considérons principalement deux paradigmes en ligne: celui où les tâches se présentent dans la liste et celui où les tâches arrivent au fur et à mesure. Sur la base de ces deux paradigmes, nous considérons différents modèles : une seule machine, deux machines identiques parallèles, deux machines uniformes parallèles, batch machines et open shop. Pour chacun des problèmes, nous démontrons une borne inférieure de ratios compétitifs et proposons des algorithmes en ligne. Ensuite, nous évaluons la performance de ces algorithmes à l'aide de l'analyse compétitive. Pour certains problèmes, nous montrons que les algorithmes proposés sont optimaux dans le sens où le ratio compétitif est égal à la borne inférieure.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00453316
Date24 September 2009
CreatorsLiu, Ming
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds