Return to search

Estimation de l’écart type du délai de bout-en-bout par méthodes passives / Passive measurement in Software Defined Networks

Depuis l'avènement du réseau Internet, le volume de données échangées sur les réseaux a crû de manière exponentielle. Le matériel présent sur les réseaux est devenu très hétérogène, dû entre autres à la multiplication des "middleboxes" (parefeux, routeurs NAT, serveurs VPN, proxy, etc.). Les algorithmes exécutés sur les équipements réseaux (routage, “spanning tree”, etc.) sont souvent complexes, parfois fermés et propriétaires et les interfaces de supervision peuvent être très différentes d'un constructeur/équipement à un autre. Ces différents facteurs rendent la compréhension et le fonctionnement du réseau complexe. Cela a motivé la définition d'un nouveau paradigme réseaux afin de simplifier la conception et la gestion des réseaux : le SDN (“Software-defined Networking”). Il introduit la notion de contrôleur, qui est un équipement qui a pour rôle de contrôler les équipements du plan de données. Le concept SDN sépare donc le plan de données chargés de l'acheminement des paquets, qui est opéré par des équipements nommés virtual switches dans la terminologie SDN, et le plan contrôle, en charge de toutes les décisions, et qui est donc effectué par le contrôleur SDN. Pour permettre au contrôleur de prendre ses décisions, il doit disposer d'une vue globale du réseau. En plus de la topologie et de la capacité des liens, des critères de performances comme le délai, le taux de pertes, la bande passante disponible, peuvent être pris en compte. Cette connaissance peut permettre par exemple un routage multi-classes, ou/et garantir des niveaux de qualité de service. Les contributions de cette thèse portent sur la proposition d'algorithmes permettant à une entité centralisée, et en particulier à un contrôleur dans un cadre SDN, d'obtenir des estimations fiables du délai de bout-en-bout pour les flux traversant le réseau. Les méthodes proposées sont passives, c'est-à-dire qu'elles ne génèrent aucun trafic supplémentaire. Nous nous intéressons tout particulièrement à la moyenne et l'écart type du délai. Il apparaît que le premier moment peut être obtenu assez facilement. Au contraire, la corrélation qui apparaît dans les temps d'attentes des noeuds du réseau rend l'estimation de l'écart type beaucoup plus complexe. Nous montrons que les méthodes développées sont capables de capturer les corrélations des délais dans les différents noeuds et d'offrir des estimations précises de l'écart type. Ces résultats sont validés par simulations où nous considérons un large éventail de scénarios permettant de valider nos algorithmes dans différents contextes d'utilisation / Since the early beginning of Internet, the amount of data exchanged over the networks has exponentially grown. The devices deployed on the networks are very heterogeneous, because of the growing presence of middleboxes (e.g., firewalls, NAT routers, VPN servers, proxy). The algorithms run on the networking devices (e.g., routing, spanning tree) are often complex, closed, and proprietary while the interfaces to access these devices typically vary from one manufacturer to the other. All these factors tend to hinder the understanding and the management of networks. Therefore a new paradigm has been introduced to ease the design and the management of networks, namely, the SDN (Software-defined Networking). In particular, SDN defines a new entity, the controller that is in charge of controlling the devices belonging to the data plane. Thus, in a SDN-network, the data plane, which is handled by networking devices called virtual switches, and the control plane, which takes the decisions and executed by the controller, are separated. In order to let the controller take its decisions, it must have a global view on the network. This includes the topology of the network and its links capacity, along with other possible performance metrics such delays, loss rates, and available bandwidths. This knowledge can enable a multi-class routing, or help guarantee levels of Quality of Service. The contributions of this thesis are new algorithms that allow a centralized entity, such as the controller in an SDN network, to accurately estimate the end-to-end delay for a given flow in its network. The proposed methods are passive in the sense that they do not require any additional traffic to be run. More precisely, we study the expectation and the standard deviation of the delay. We show how the first moment can be easily computed. On the other hand, estimating the standard deviation is much more complex because of the correlations existing between the different waiting times. We show that the proposed methods are able to capture these correlations between delays and thus providing accurate estimations of the standard deviation of the end-to-end delay. Simulations that cover a large range of possible scenariosvalidate these results

Identiferoai:union.ndltd.org:theses.fr/2017LYSE1044
Date09 March 2017
CreatorsNguyen, Huu-Nghi
ContributorsLyon, Guérin-Lassous, Isabelle, Begin, Thomas, Busson, Anthony Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0154 seconds