Return to search

Amphibian and reptile conservation in a changing environment: Case studies from the southeastern United States

The southeastern United States is a global biodiversity hotspot but has experienced severe declines of natural ecosystems. The southeast is currently facing widespread change, particularly from an increasing human population and climate change, that is likely to impact all remaining natural areas to some degree. In this work, I examine some of the challenges currently facing imperiled species of reptiles and amphibians in this region. The work is focused on two species, the Reticulated Flatwoods Salamander (Ambystoma bishopi) and the Eastern Indigo Snake (Drymarchon couperi) both of which are listed on the U.S. Endangered Species List. Chapter 1 used Light Detection and Ranging (LiDAR) data to measure wetland bathymetry (basin shape) in flatwoods salamander breeding wetlands. Bathymetry data were used to construct stage–area relationships for each wetland, and a history of water level monitoring data were applied to these relationships to build multi-year time series of flooded area metrics. These metrics were then combined with an assessment of vegetation characteristics to map potentially suitable habitat for flatwoods salamander breeding within each wetland. Chapter 2 focused on flatwoods salamander phenology (the timing of life history events) in response to climate change. I quantified flatwoods salamander movements into and out of breeding wetlands over a 10-year period (2010–2020), identifying temperature and precipitation patterns that were conducive to salamander movements. I then used future climate projections to forecast movement opportunities for flatwoods salamander from 2030–2099 and used an existing hydrologic model built on the same climate data to understand how phenology may interact with hydrology. Overall, only a small number of years are likely to have an ideal intersection of phenology and hydrology as has been observed during recent breeding seasons. Chapter 3 described the construction of a stochastic Integral Projection Model for flatwoods salamanders. I integrated the projections from Chapter 2 with the population model to estimate the viability of two flatwoods salamander populations from 2030–2099 under multiple climate change scenarios. The results indicated that approximately half of the examined scenarios resulted in a high probability (>0.5) of extinction when considering both wetland hydrology and salamander phenology. In Chapter 4, I described the creation of a stochastic Integral Projection Model for indigo snakes. I then demonstrated the utility of this model by examining the effects of initial population size, road density, and removal of individuals to support a captive colony on indigo snake populations. I found that high road densities and high collection rates would likely lead to population declines, although the rate of declines and extinction risk varied across scenarios. Taken together, these projects highlight some of the challenges currently facing herpetofauna in the southeastern United States, demonstrate the difficulty in conserving these often-overlooked species, and provide useful tools for ongoing conservation efforts focusing on these two imperiled species. / Doctor of Philosophy / We are in the midst of a global biodiversity crisis, with rates of species extinction far exceeding normal levels. Species loss is largely driven by global change attributable to human activities. A rapidly changing world can make it challenging to effectively conserve and manage imperiled species. In this work, I studied two species found only in the southeastern United States that are listed on the U.S. Endangered Species List. Chapters 1–3 focused on the Reticulated Flatwoods Salamander (Ambystoma bishopi), while Chapter 4 focused on the Eastern Indigo Snake (Drymarchon couperi). In Chapter 1, I used high resolution elevation data to map the shape of flatwoods salamander breeding wetlands. These data were then used to estimate flooded areas across multiple years. Flooded area metrics were combined with vegetation measurements to map potential flatwoods salamander breeding habitat. In Chapter 2, I examined how flatwoods salamander movements may respond to climate change. I identified time periods and weather conditions that coincided with flatwoods salamander movements into and out of breeding wetlands. I then projected potential movement opportunities based on multiple future climate scenarios for each breeding season from 2030–2099. My results showed that few years are likely to be ideal for flatwoods salamander reproduction, which is similar to trends observed in recent years. In Chapter 3, I built a population model for flatwoods salamanders. I then combined the model with predictions made in Chapter 2 to estimate the probability that populations would go extinct by the end of the century. The results indicated that the two flatwoods salamander populations examined had a high probability (>0.5) of extinction in about 50% of the climate scenarios. In Chapter 4, I constructed a population model for indigo snakes using a variety of available data. I used this model to examine the effects of road density, initial population size, and removal of individuals to support a captive colony on indigo snake populations. The results suggested that populations experiencing high road densities or high collection rates were likely to decline over time. These projects highlight some of the difficulties in conserving often-overlooked reptiles and amphibians in the southeastern United States and provide important tools for ongoing conservation projects working with these two imperiled species.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115148
Date22 May 2023
CreatorsChandler, Houston Cawthorn
ContributorsFish and Wildlife Conservation, Haas, Carola A., Jiao, Yan, Mims, Meryl C., McLaughlin, Daniel L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
CoverageUnited States
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0041 seconds